Frequentist and Bayesian Approaches in Modeling and Prediction of Extreme Rainfall Series: A Case Study from Southern Highlands Region of Tanzania

IF 2.1 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Erick A. Kyojo, Silas S. Mirau, Sarah E. Osima, Verdiana G. Masanja
{"title":"Frequentist and Bayesian Approaches in Modeling and Prediction of Extreme Rainfall Series: A Case Study from Southern Highlands Region of Tanzania","authors":"Erick A. Kyojo, Silas S. Mirau, Sarah E. Osima, Verdiana G. Masanja","doi":"10.1155/2024/8533930","DOIUrl":null,"url":null,"abstract":"This study focuses on modeling and predicting extreme rainfall based on data from the Southern Highlands region, the critical for rain-fed agriculture in Tanzania. Analyzing 31 years of annual maximum rainfall data spanning from 1990 to 2020, the Generalized Extreme Value (GEV) model proved to be the best for modeling extreme rainfall in all stations. Three estimation methods–<i>L</i>-moments, maximum likelihood estimation (MLE), and Bayesian Markov chain Monte Carlo (MCMC)–were employed to estimate GEV parameters and future return levels. The Bayesian MCMC approach demonstrated superior performance by incorporating noninformative priors to ensure that the prior information had minimal influence on the analysis, allowing the observed data to play a dominant role in shaping the posterior distribution. Furthermore, return levels for various future periods were estimated, providing guidance for flood protection measures and infrastructure design. Trend analysis using <svg height=\"10.2124pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -6.78297 7.83752 10.2124\" width=\"7.83752pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> value, Kendall’s tau, and Sen’s slope indicated no statistically significant trends in rainfall patterns, although a weak positive trend in extreme rainfall events was observed, suggesting a gradual and modest increase over time. Overall, the study contributes valuable insights into extreme rainfall patterns and underscores the importance of <i>L</i>-moments in identifying the best fit distribution and Bayesian MCMC methodology for accurate parameter estimation and prediction, enabling effective measures and infrastructure planning in the region.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":"34 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1155/2024/8533930","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on modeling and predicting extreme rainfall based on data from the Southern Highlands region, the critical for rain-fed agriculture in Tanzania. Analyzing 31 years of annual maximum rainfall data spanning from 1990 to 2020, the Generalized Extreme Value (GEV) model proved to be the best for modeling extreme rainfall in all stations. Three estimation methods–L-moments, maximum likelihood estimation (MLE), and Bayesian Markov chain Monte Carlo (MCMC)–were employed to estimate GEV parameters and future return levels. The Bayesian MCMC approach demonstrated superior performance by incorporating noninformative priors to ensure that the prior information had minimal influence on the analysis, allowing the observed data to play a dominant role in shaping the posterior distribution. Furthermore, return levels for various future periods were estimated, providing guidance for flood protection measures and infrastructure design. Trend analysis using value, Kendall’s tau, and Sen’s slope indicated no statistically significant trends in rainfall patterns, although a weak positive trend in extreme rainfall events was observed, suggesting a gradual and modest increase over time. Overall, the study contributes valuable insights into extreme rainfall patterns and underscores the importance of L-moments in identifying the best fit distribution and Bayesian MCMC methodology for accurate parameter estimation and prediction, enabling effective measures and infrastructure planning in the region.
极端降雨序列建模和预测中的频数法和贝叶斯法:坦桑尼亚南部高地地区的案例研究
本研究的重点是根据坦桑尼亚雨水灌溉农业的关键地区--南部高原地区的数据,对极端降雨量进行建模和预测。通过分析从 1990 年到 2020 年的 31 年最大年降雨量数据,证明广义极值(GEV)模型最适合对所有站点的极端降雨量进行建模。我们采用了三种估计方法--常量、最大似然估计(MLE)和贝叶斯马尔科夫链蒙特卡罗(MCMC)--来估计 GEV 参数和未来的回归水平。贝叶斯 MCMC 方法通过纳入非信息先验来确保先验信息对分析的影响最小,从而使观察到的数据在形成后验分布中发挥主导作用,从而显示出卓越的性能。此外,还估算了未来不同时期的回归水位,为防洪措施和基础设施设计提供指导。使用值、Kendall's tau 和 Sen's slope 进行的趋势分析表明,降雨模式在统计上没有显著的趋势,但观察到极端降雨事件有微弱的正趋势,这表明随着时间的推移,降雨量在逐步适度增加。总之,该研究为了解极端降雨模式提供了宝贵的见解,并强调了 L-moments 在确定最佳拟合分布方面的重要性,以及贝叶斯 MCMC 方法对准确参数估计和预测的重要性,从而有助于在该地区采取有效措施和进行基础设施规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Meteorology
Advances in Meteorology 地学天文-气象与大气科学
CiteScore
5.30
自引率
3.40%
发文量
80
审稿时长
>12 weeks
期刊介绍: Advances in Meteorology is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of meteorology and climatology. Topics covered include, but are not limited to, forecasting techniques and applications, meteorological modeling, data analysis, atmospheric chemistry and physics, climate change, satellite meteorology, marine meteorology, and forest meteorology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信