The First Exit Time of Fractional Brownian Motion with a Drift from a Parabolic Domain

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Yinbing Zhou, Dawei Lu
{"title":"The First Exit Time of Fractional Brownian Motion with a Drift from a Parabolic Domain","authors":"Yinbing Zhou, Dawei Lu","doi":"10.1007/s11009-024-10074-1","DOIUrl":null,"url":null,"abstract":"<p>We study the first exit time of a fractional Brownian motion with a drift from a parabolic domain. Actually, we explore three different regimes. In the first regime, the role of drift is negligible. In the second regime, the role of drift is dominating. The behavior of exit probability is the same as that of the crossing probability of a certain moving non-random boundary. In particular, the most interesting, intermediate regime, where all factors come into play, has been solved in this paper. Finally, numerical simulations are conducted, providing an approximate range for the asymptotic estimates to illustrate the practical implications and potential applications of our main results.</p>","PeriodicalId":18442,"journal":{"name":"Methodology and Computing in Applied Probability","volume":"8 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology and Computing in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11009-024-10074-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We study the first exit time of a fractional Brownian motion with a drift from a parabolic domain. Actually, we explore three different regimes. In the first regime, the role of drift is negligible. In the second regime, the role of drift is dominating. The behavior of exit probability is the same as that of the crossing probability of a certain moving non-random boundary. In particular, the most interesting, intermediate regime, where all factors come into play, has been solved in this paper. Finally, numerical simulations are conducted, providing an approximate range for the asymptotic estimates to illustrate the practical implications and potential applications of our main results.

Abstract Image

带有抛物线域漂移的分数布朗运动的首次退出时间
我们研究了带有抛物线域漂移的分数布朗运动的首次退出时间。实际上,我们探讨了三种不同的情况。在第一种情况下,漂移的作用可以忽略不计。在第二种情况下,漂移的作用占主导地位。退出概率的行为与某个移动的非随机边界的穿越概率相同。本文特别解决了最有趣的中间机制,即所有因素都起作用的机制。最后,本文进行了数值模拟,提供了渐近估计值的近似范围,以说明我们主要结果的实际意义和潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
58
审稿时长
6-12 weeks
期刊介绍: Methodology and Computing in Applied Probability will publish high quality research and review articles in the areas of applied probability that emphasize methodology and computing. Of special interest are articles in important areas of applications that include detailed case studies. Applied probability is a broad research area that is of interest to many scientists in diverse disciplines including: anthropology, biology, communication theory, economics, epidemiology, finance, linguistics, meteorology, operations research, psychology, quality control, reliability theory, sociology and statistics. The following alphabetical listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interests: -Algorithms- Approximations- Asymptotic Approximations & Expansions- Combinatorial & Geometric Probability- Communication Networks- Extreme Value Theory- Finance- Image Analysis- Inequalities- Information Theory- Mathematical Physics- Molecular Biology- Monte Carlo Methods- Order Statistics- Queuing Theory- Reliability Theory- Stochastic Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信