Design of Novel Poly(Propranolol) Acrylate and Methacrylate Polymers through Radical Polymerization for Antibacterial Activity and Metal Ion Absorption
John Santhosh Kumar, P. Kamaraj, P. A. Vivekanand, Govindasami Periyasami, Mostafizur Rahaman, Perumal Karthikeyan, U. T. Uthappa, Selvakumar Palaniappan
{"title":"Design of Novel Poly(Propranolol) Acrylate and Methacrylate Polymers through Radical Polymerization for Antibacterial Activity and Metal Ion Absorption","authors":"John Santhosh Kumar, P. Kamaraj, P. A. Vivekanand, Govindasami Periyasami, Mostafizur Rahaman, Perumal Karthikeyan, U. T. Uthappa, Selvakumar Palaniappan","doi":"10.1155/2024/6626223","DOIUrl":null,"url":null,"abstract":"The monomer 1-(isopropylamino)-3-(1-naphthyloxy)-2-propanoacrylate (IANOPA) and monomer 1-(isopropylamino)-3-(1-naphthyloxy)-2-propanomethacrylate (IANOPMA) were synthesized by treating 1-(isopropylamino)-3-(1-naphthyloxy)-2-propanol with acryloylchloride/methacryloyl chloride. The above esterification reactions were carried out in the presence of triethylamine. By employing the free radical polymerization method, the synthesized monomers were converted into polymers by using an initiator 2, 2<span><svg height=\"7.86364pt\" style=\"vertical-align:-0.04981995pt\" version=\"1.1\" viewbox=\"-0.0498162 -7.81382 4.53621 7.86364\" width=\"4.53621pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>-</span>azobisisobutyronitrile in the presence of nitrogen environment at <span><svg height=\"8.69875pt\" style=\"vertical-align:-0.3499298pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.34882 23.019 8.69875\" width=\"23.019pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,6.242,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,15.388,0)\"></path></g></svg><span></span><svg height=\"8.69875pt\" style=\"vertical-align:-0.3499298pt\" version=\"1.1\" viewbox=\"25.8741838 -8.34882 6.436 8.69875\" width=\"6.436pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,25.924,0)\"></path></g></svg></span>°C. The monomers and polymers were characterized by various techniques such as FT-IR, UV, <sup>1</sup>H NMR, and <sup>13</sup>C NMR spectroscopic analyses. Further, differential scanning calorimetry (DSC) was used to estimate the glass transition temperature (<span><svg height=\"14.4911pt\" style=\"vertical-align:-5.52898pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.96212 13.0802 14.4911\" width=\"13.0802pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,7.176,3.132)\"></path></g></svg>).</span> Gel permeation chromatography (GPC) was used to estimate the molecular weight of the polymers. In addition, monomer and polymer surfaces’ morphology was analyzed using SEM analysis. As a primary application, the effectiveness of synthesized monomers and polymers was explored as antibacterial agents against gram-positive bacteria (Staphylococcus aureus) and gram-negative bacteria (Pseudomonas aeruginosa) which were measured from their inhibitory zone diameters. Further, the synthesized polymers, poly-IANOPA and poly-IANOPMA, were utilized for the uptake ability study of heavy metal ions such as Zn<sup>2+</sup>, Cu<sup>2+</sup>, Ni<sup>2+</sup>, and Pb<sup>2+</sup> present in water sources by equilibrium method.","PeriodicalId":14283,"journal":{"name":"International Journal of Polymer Science","volume":"37 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/6626223","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The monomer 1-(isopropylamino)-3-(1-naphthyloxy)-2-propanoacrylate (IANOPA) and monomer 1-(isopropylamino)-3-(1-naphthyloxy)-2-propanomethacrylate (IANOPMA) were synthesized by treating 1-(isopropylamino)-3-(1-naphthyloxy)-2-propanol with acryloylchloride/methacryloyl chloride. The above esterification reactions were carried out in the presence of triethylamine. By employing the free radical polymerization method, the synthesized monomers were converted into polymers by using an initiator 2, 2-azobisisobutyronitrile in the presence of nitrogen environment at °C. The monomers and polymers were characterized by various techniques such as FT-IR, UV, 1H NMR, and 13C NMR spectroscopic analyses. Further, differential scanning calorimetry (DSC) was used to estimate the glass transition temperature (). Gel permeation chromatography (GPC) was used to estimate the molecular weight of the polymers. In addition, monomer and polymer surfaces’ morphology was analyzed using SEM analysis. As a primary application, the effectiveness of synthesized monomers and polymers was explored as antibacterial agents against gram-positive bacteria (Staphylococcus aureus) and gram-negative bacteria (Pseudomonas aeruginosa) which were measured from their inhibitory zone diameters. Further, the synthesized polymers, poly-IANOPA and poly-IANOPMA, were utilized for the uptake ability study of heavy metal ions such as Zn2+, Cu2+, Ni2+, and Pb2+ present in water sources by equilibrium method.
期刊介绍:
The International Journal of Polymer Science is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles on the chemistry and physics of macromolecules.