Intersection theory and volumes of moduli spaces of flat metrics on the sphere

Pub Date : 2024-01-27 DOI:10.1007/s10711-023-00883-y
Duc-Manh Nguyen, Vincent Koziarz
{"title":"Intersection theory and volumes of moduli spaces of flat metrics on the sphere","authors":"Duc-Manh Nguyen, Vincent Koziarz","doi":"10.1007/s10711-023-00883-y","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\mathbb {P}\\Omega ^d\\mathcal {M}_{0,n}(\\kappa )\\)</span>, where <span>\\(\\kappa =(k_1,\\dots ,k_n)\\)</span>, be a stratum of (projectivized) <i>d</i>-differentials in genus 0. We prove a recursive formula which relates the volume of <span>\\(\\mathbb {P}\\Omega ^d\\mathcal {M}_{0,n}(\\kappa )\\)</span> to the volumes of other strata of lower dimensions in the case where none of the <span>\\(k_i\\)</span> is divisible by <i>d</i>. As an application, we give a new proof of the Kontsevich’s formula for the volumes of strata of quadratic differentials with simple poles and zeros of odd order, which was originally proved by Athreya–Eskin–Zorich. In another application, we show that up to some power of <span>\\(\\pi \\)</span>, the volume of the moduli spaces of flat metrics on the sphere with prescribed cone angles is a continuous piecewise polynomial with rational coefficients function of the angles, provided none of the angles is an integral multiple of <span>\\(2\\pi \\)</span>. This generalizes the results of Koziarz and Nguyen (Ann Sci l’Éc Normale Supér 51(6):1549–1597, 2018) and McMullen (Am J Math 139(1):261–291, 2017).\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-023-00883-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\mathbb {P}\Omega ^d\mathcal {M}_{0,n}(\kappa )\), where \(\kappa =(k_1,\dots ,k_n)\), be a stratum of (projectivized) d-differentials in genus 0. We prove a recursive formula which relates the volume of \(\mathbb {P}\Omega ^d\mathcal {M}_{0,n}(\kappa )\) to the volumes of other strata of lower dimensions in the case where none of the \(k_i\) is divisible by d. As an application, we give a new proof of the Kontsevich’s formula for the volumes of strata of quadratic differentials with simple poles and zeros of odd order, which was originally proved by Athreya–Eskin–Zorich. In another application, we show that up to some power of \(\pi \), the volume of the moduli spaces of flat metrics on the sphere with prescribed cone angles is a continuous piecewise polynomial with rational coefficients function of the angles, provided none of the angles is an integral multiple of \(2\pi \). This generalizes the results of Koziarz and Nguyen (Ann Sci l’Éc Normale Supér 51(6):1549–1597, 2018) and McMullen (Am J Math 139(1):261–291, 2017).

Abstract Image

分享
查看原文
球面上平面度量的交点理论和模量空间的体积
让 \(\mathbb {P}\Omega ^d\mathcal {M}_{0,n}(\kappa )\) ,其中 \(\kappa =(k_1,\dots ,k_n)\),是属 0 的(投影化的)d 微分的一个层。我们证明了一个递归公式,它将 \(\mathbb {P}\Omega ^d\mathcal {M}_{0,n}(\kappa )\) 的体积与其他更低维度的层的体积联系起来,这种情况下 \(k_i\) 都不能被 d 整除。作为应用,我们给出了关于具有奇数阶简单极点和零点的二次微分方程层体积的康采维奇公式的新证明,该公式最初由阿特里亚-埃斯金-佐里奇证明。在另一个应用中,我们证明,只要没有一个角是\(2\pi \)的整数倍,具有规定锥角的球面上平面度量的模空间的体积就是一个连续的、具有有理系数的多项式。这概括了 Koziarz 和 Nguyen (Ann Sci l'Éc Normale Supér 51(6):1549-1597, 2018) 以及 McMullen (Am J Math 139(1):261-291, 2017) 的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信