Multi-V-Stain: Multiplexed Virtual Staining of Histopathology Whole-Slide Images

Sonali Andani, Boqi Chen, Joanna Ficek-Pascual, Simon Heinke, Ruben Casanova, Bettina Sobottka, Bernd Bodenmiller, The Tumor Profiler Consortium, Viktor H Kölzer, Gunnar Rätsch
{"title":"Multi-V-Stain: Multiplexed Virtual Staining of Histopathology Whole-Slide Images","authors":"Sonali Andani, Boqi Chen, Joanna Ficek-Pascual, Simon Heinke, Ruben Casanova, Bettina Sobottka, Bernd Bodenmiller, The Tumor Profiler Consortium, Viktor H Kölzer, Gunnar Rätsch","doi":"10.1101/2024.01.26.24301803","DOIUrl":null,"url":null,"abstract":"Pathological assessment of Hematoxylin & Eosin (H&E) stained tissue samples is a well-established clinical routine for cancer diagnosis. While providing rich morphological data, it lacks information on protein expression patterns which is crucial for cancer prognosis and treatment recommendations. Imaging Mass Cytometry (IMC) excels in highly multiplexed protein profiling but faces challenges like high operational cost and a restrictive focus on small Regions-of-Interest. Addressing this, we introduce Multi-V-Stain, a novel image-to-image translation method for multiplexed IMC virtual staining. Our method effectively utilizes the rich morphological features from H&E images to predict multiplexed protein expressions at a Whole-Slide Image level. In evaluations using an in-house melanoma dataset, Multi-V-Stain consistently outperforms existing methods in terms of image quality and biological relevance of the generated stains.","PeriodicalId":501528,"journal":{"name":"medRxiv - Pathology","volume":"327 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.01.26.24301803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pathological assessment of Hematoxylin & Eosin (H&E) stained tissue samples is a well-established clinical routine for cancer diagnosis. While providing rich morphological data, it lacks information on protein expression patterns which is crucial for cancer prognosis and treatment recommendations. Imaging Mass Cytometry (IMC) excels in highly multiplexed protein profiling but faces challenges like high operational cost and a restrictive focus on small Regions-of-Interest. Addressing this, we introduce Multi-V-Stain, a novel image-to-image translation method for multiplexed IMC virtual staining. Our method effectively utilizes the rich morphological features from H&E images to predict multiplexed protein expressions at a Whole-Slide Image level. In evaluations using an in-house melanoma dataset, Multi-V-Stain consistently outperforms existing methods in terms of image quality and biological relevance of the generated stains.
Multi-V-Stain:组织病理学全切片图像的多重虚拟染色
对经苏木精和伊红(H&E)染色的组织样本进行病理评估是一种行之有效的癌症诊断临床常规方法。虽然它能提供丰富的形态学数据,但却缺乏对癌症预后和治疗建议至关重要的蛋白质表达模式信息。成像质控细胞仪(IMC)在高度复用的蛋白质谱分析方面表现出色,但也面临着操作成本高、关注小兴趣区受限等挑战。针对这一问题,我们推出了 Multi-V-Stain,这是一种用于多重 IMC 虚拟染色的新型图像到图像转换方法。我们的方法有效利用了 H&E 图像的丰富形态特征,在全切片图像水平上预测多重蛋白表达。在使用内部黑色素瘤数据集进行的评估中,Multi-V-Stain 在图像质量和生成染色的生物学相关性方面始终优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信