Study of a bounded interval perks distribution with quantile regression analysis

IF 2.1 4区 数学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Laila A. Al-Essa, Shakaiba Shafiq, Deniz Ozonur, Farrukh Jamal
{"title":"Study of a bounded interval perks distribution with quantile regression analysis","authors":"Laila A. Al-Essa, Shakaiba Shafiq, Deniz Ozonur, Farrukh Jamal","doi":"10.1002/sam.11656","DOIUrl":null,"url":null,"abstract":"In this article, a novel bounded interval model called the unit-Perks model is developed by suitably transforming the positive random variable of the Perks distribution. Numerous statistical features of the bounded interval Perks model are being explored based on the expansion of the density function. Eight distinct estimation approaches are being used to estimate the parameters of the unit-Perks model. A throughout simulation analysis is also included to evaluate the precision of the resulting estimators from eight estimating approaches. Two real bounded interval data sets are being utilized to investigate the practical applicability of the unit-Perks model. A comparison is also made to determine which method of estimation works better for the given model. According to a comparison of eight different estimation approaches, the maximum likelihood estimation approach outperformed than the other seven estimating approaches. The unit-perks model is then used to introduce the quantile regression model named as quantile unit-Perks distribution. Application to real data set for the quantile unit-Perks distribution is also performed. The quantile residuals are used for the residual analysis of the fitted regression model. On the basis of mathematical, computational, and pictorial evidences, it is concluded that the presented model exhibited greater modeling capabilities.","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11656","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a novel bounded interval model called the unit-Perks model is developed by suitably transforming the positive random variable of the Perks distribution. Numerous statistical features of the bounded interval Perks model are being explored based on the expansion of the density function. Eight distinct estimation approaches are being used to estimate the parameters of the unit-Perks model. A throughout simulation analysis is also included to evaluate the precision of the resulting estimators from eight estimating approaches. Two real bounded interval data sets are being utilized to investigate the practical applicability of the unit-Perks model. A comparison is also made to determine which method of estimation works better for the given model. According to a comparison of eight different estimation approaches, the maximum likelihood estimation approach outperformed than the other seven estimating approaches. The unit-perks model is then used to introduce the quantile regression model named as quantile unit-Perks distribution. Application to real data set for the quantile unit-Perks distribution is also performed. The quantile residuals are used for the residual analysis of the fitted regression model. On the basis of mathematical, computational, and pictorial evidences, it is concluded that the presented model exhibited greater modeling capabilities.
利用量子回归分析研究有界区间津贴分布
本文通过对 Perks 分布的正随机变量进行适当变换,建立了一种新的有界区间模型,即单位 Perks 模型。根据密度函数的扩展,探讨了有界区间 Perks 模型的许多统计特征。八种不同的估算方法用于估算单位 Perks 模型的参数。此外,还进行了全程模拟分析,以评估八种估计方法所产生的估计器的精度。利用两个真实的有界区间数据集来研究单位-珀克斯模型的实际适用性。同时还进行了比较,以确定哪种估算方法对给定模型更有效。根据对八种不同估计方法的比较,最大似然估计方法优于其他七种估计方法。然后,使用单位-珀克斯模型引入了名为量子单位-珀克斯分布的量子回归模型。此外,还将量子单位-珀克斯分布应用于真实数据集。量子残差用于拟合回归模型的残差分析。在数学、计算和图像证据的基础上,得出的结论是所提出的模型具有更强的建模能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Analysis and Data Mining
Statistical Analysis and Data Mining COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.20
自引率
7.70%
发文量
43
期刊介绍: Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce. The focus of the journal is on papers which satisfy one or more of the following criteria: Solve data analysis problems associated with massive, complex datasets Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research. Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models Provide survey to prominent research topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信