{"title":"A Novel Count of the Spanning Trees of a Cube","authors":"Thomas W. Mattman","doi":"10.1007/s00373-023-02746-5","DOIUrl":null,"url":null,"abstract":"<p>Using the special value at <span>\\(u=1\\)</span> of the Artin-Ihara <i>L</i>-function, we give a short proof of the count of the number of spanning trees in the <i>n</i>-cube.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"14 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02746-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Using the special value at \(u=1\) of the Artin-Ihara L-function, we give a short proof of the count of the number of spanning trees in the n-cube.
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.