On the parameters of some LCD BCH codes over $$\mathbb {F}_q$$ with length $$(q^m+1)/\lambda $$

{"title":"On the parameters of some LCD BCH codes over $$\\mathbb {F}_q$$ with length $$(q^m+1)/\\lambda $$","authors":"","doi":"10.1007/s12095-024-00697-z","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>As a particular subclass of cyclic codes, BCH codes have wide applications in storage devices, communication systems, consumer electronics and other fields. However, parameters of BCH codes are unknown in general. In this paper, we investigate parameters of BCH codes of length <span> <span>\\(\\frac{q^m+1}{\\lambda }\\)</span> </span> where <span> <span>\\(\\lambda \\mid q+1\\)</span> </span>.Some new techniques are employed to study the coset leaders. For any odd prime power <em>q</em> and <span> <span>\\(m=4,8\\)</span> </span>, or <span> <span>\\(m\\ge 12\\)</span> </span> and <span> <span>\\(m\\equiv 4~ (\\textrm{mod}~ 8)\\)</span> </span>, the second, the third and the fourth largest coset leaders modulo <span> <span>\\(q^m+1\\)</span> </span> are determined, and the dimensions of some BCH codes of length <span> <span>\\(q^m+1\\)</span> </span> with large designed distances are given. For <span> <span>\\(1&lt;\\lambda &lt;q+1\\)</span> </span>, the first few largest coset leaders and the coset leaders modulo <span> <span>\\(\\frac{q^m+1}{\\lambda }\\)</span> </span> in the range 1 to <span> <span>\\( \\frac{ q^{\\lfloor (m+1)/2\\rfloor }}{\\lambda }\\)</span> </span> are studied, and the dimensions of some BCH codes of length <span> <span>\\(\\frac{q^m+1}{\\lambda }\\)</span> </span> are given as well. The BCH codes presented in this paper are LCD codes and have a sharper lower bound on the minimum distance than the well-known BCH bound.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00697-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a particular subclass of cyclic codes, BCH codes have wide applications in storage devices, communication systems, consumer electronics and other fields. However, parameters of BCH codes are unknown in general. In this paper, we investigate parameters of BCH codes of length \(\frac{q^m+1}{\lambda }\) where \(\lambda \mid q+1\) .Some new techniques are employed to study the coset leaders. For any odd prime power q and \(m=4,8\) , or \(m\ge 12\) and \(m\equiv 4~ (\textrm{mod}~ 8)\) , the second, the third and the fourth largest coset leaders modulo \(q^m+1\) are determined, and the dimensions of some BCH codes of length \(q^m+1\) with large designed distances are given. For \(1<\lambda <q+1\) , the first few largest coset leaders and the coset leaders modulo \(\frac{q^m+1}{\lambda }\) in the range 1 to \( \frac{ q^{\lfloor (m+1)/2\rfloor }}{\lambda }\) are studied, and the dimensions of some BCH codes of length \(\frac{q^m+1}{\lambda }\) are given as well. The BCH codes presented in this paper are LCD codes and have a sharper lower bound on the minimum distance than the well-known BCH bound.

关于长度为 $$(q^m+1)/\lambda $$ 的 $$\mathbb {F}_q$$ 上一些 LCD BCH 编码的参数
摘要 BCH 码作为循环码的一个特殊子类,在存储设备、通信系统、消费电子产品等领域有着广泛的应用。然而,一般情况下 BCH 码的参数是未知的。本文研究了长度为 \(\frac{q^m+1}{lambda }\) 的 BCH 码的参数,其中 \(\lambda \mid q+1\) .采用了一些新技术来研究余集领导者。对于任何奇素数幂q和(m=4,8),或者(m≥12)和(m≥4~ (textrm{mod}~8)),第二、第三和第四幂都是奇数幂。确定了模(q^m+1)的第二、第三和第四大余弦组长,并给出了一些具有大设计距离的长度为(q^m+1)的 BCH 码的尺寸。对于 \(1<\lambda <;q+1) 时,研究了在 1 到 \( \frac{ q^{\lfloor (m+1)/2\rfloor }}{\lambda }\) 范围内的前几个最大的子集领导者和 modulo \(\frac{q^m+1}{\lambda }\) 的子集领导者,并给出了一些长度为 \(\frac{q^m+1}{\lambda }\) 的 BCH 码的维数。本文提出的 BCH 编码是 LCD 编码,其最小距离的下界比著名的 BCH 界值更小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信