Experimental Study of Evaporation of Nanofluid Droplets on Substrates under Solar Radiation

IF 1.4 4区 化学 Q4 CHEMISTRY, PHYSICAL
Q. T. Tran, A. S. Dmitriev, P. G. Makarov, I. A. Mikhailova
{"title":"Experimental Study of Evaporation of Nanofluid Droplets on Substrates under Solar Radiation","authors":"Q. T. Tran, A. S. Dmitriev, P. G. Makarov, I. A. Mikhailova","doi":"10.1134/s1061933x23600902","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This work is devoted to the experimental study of evaporating droplets of titania-, silica-, and diamond-based nanofluids on a substrate under solar radiation. The influence of various factors, including the type of a material, concentration of nanocomponents, irradiation direction, droplet volume, and substrate material, on the droplet evaporation has been investigated. As a result, the critical concentrations of nanoparticles, at which the evaporation rate reaches a stable level, have been determined for droplets of the studied nanofluids. The regimes and stages of the droplet evaporation process have been analyzed for the cases of the subcritical and critical nanoparticle concentrations. The efficiency of droplet evaporation under solar radiation has been shown to strongly depend on radiation direction. The effects of droplet volume and substrate material on the evaporation rate have been studied. In addition to the evaporation efficiency, the morphology of the structures deposited from the droplets has been analyzed. It has been shown that these structures depend on the concentration and material of nanoparticles, as well as on the regime of droplet evaporation. The results of this study enable one to gain a deeper insight into the behavior of the droplets during evaporation under irradiation especially in the IR region and confirm the promise of application of nanofluids in the solar thermal energy systems.</p>","PeriodicalId":521,"journal":{"name":"Colloid Journal","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s1061933x23600902","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work is devoted to the experimental study of evaporating droplets of titania-, silica-, and diamond-based nanofluids on a substrate under solar radiation. The influence of various factors, including the type of a material, concentration of nanocomponents, irradiation direction, droplet volume, and substrate material, on the droplet evaporation has been investigated. As a result, the critical concentrations of nanoparticles, at which the evaporation rate reaches a stable level, have been determined for droplets of the studied nanofluids. The regimes and stages of the droplet evaporation process have been analyzed for the cases of the subcritical and critical nanoparticle concentrations. The efficiency of droplet evaporation under solar radiation has been shown to strongly depend on radiation direction. The effects of droplet volume and substrate material on the evaporation rate have been studied. In addition to the evaporation efficiency, the morphology of the structures deposited from the droplets has been analyzed. It has been shown that these structures depend on the concentration and material of nanoparticles, as well as on the regime of droplet evaporation. The results of this study enable one to gain a deeper insight into the behavior of the droplets during evaporation under irradiation especially in the IR region and confirm the promise of application of nanofluids in the solar thermal energy systems.

Abstract Image

太阳辐射下纳米流体液滴在基底上蒸发的实验研究
摘要 这项工作致力于在太阳辐射下对二氧化钛、二氧化硅和金刚石基纳米流体在基底上蒸发液滴的实验研究。研究了各种因素(包括材料类型、纳米成分浓度、照射方向、液滴体积和基底材料)对液滴蒸发的影响。结果确定了所研究纳米流体液滴的临界纳米粒子浓度,在该浓度下蒸发率达到稳定水平。针对亚临界和临界纳米粒子浓度的情况,分析了液滴蒸发过程的机制和阶段。研究表明,太阳辐射下液滴蒸发的效率与辐射方向密切相关。研究了液滴体积和基底材料对蒸发率的影响。除了蒸发效率,还分析了液滴沉积结构的形态。结果表明,这些结构取决于纳米粒子的浓度和材料,以及液滴蒸发的制度。这项研究的结果使人们能够更深入地了解液滴在辐照(尤其是在红外区域)下蒸发时的行为,并证实了纳米流体在太阳能热能系统中的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Colloid Journal
Colloid Journal 化学-物理化学
CiteScore
2.20
自引率
18.20%
发文量
36
审稿时长
6-12 weeks
期刊介绍: Colloid Journal (Kolloidnyi Zhurnal) is the only journal in Russia that publishes the results of research in the area of chemical science dealing with the disperse state of matter and surface phenomena in disperse systems. The journal covers experimental and theoretical works on a great variety of colloid and surface phenomena: the structure and properties of interfaces; adsorption phenomena and structure of adsorption layers of surfactants; capillary phenomena; wetting films; wetting and spreading; and detergency. The formation of colloid systems, their molecular-kinetic and optical properties, surface forces, interaction of colloidal particles, stabilization, and criteria of stability loss of different disperse systems (lyosols and aerosols, suspensions, emulsions, foams, and micellar systems) are also topics of the journal. Colloid Journal also includes the phenomena of electro- and diffusiophoresis, electro- and thermoosmosis, and capillary and reverse osmosis, i.e., phenomena dealing with the existence of diffusion layers of molecules and ions in the vicinity of the interface.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信