Nanostructured Iron (III)-Copper (II) Binary Oxide as a Highly Efficient Magnetically Recoverable Nanocatalyst for Facile One-pot Synthesis of 2, 4, 5-trisubstituted Imidazole and 1, 4-dihydro Pyridine Derivatives under Solvent-free Conditions
Dhananjay N. Gaikwad, Suresh T. Gaikwad, Rajesh K. Manjul, Anjali S. Rajbhoj, Dayanand M. Suryavanshi
{"title":"Nanostructured Iron (III)-Copper (II) Binary Oxide as a Highly Efficient Magnetically Recoverable Nanocatalyst for Facile One-pot Synthesis of 2, 4, 5-trisubstituted Imidazole and 1, 4-dihydro Pyridine Derivatives under Solvent-free Conditions","authors":"Dhananjay N. Gaikwad, Suresh T. Gaikwad, Rajesh K. Manjul, Anjali S. Rajbhoj, Dayanand M. Suryavanshi","doi":"10.2174/0115701786277621231226160450","DOIUrl":null,"url":null,"abstract":": The Fe (III)-Cu (II) binary oxide magnetic nanocatalyst emerges as an environmentally friendly and highly efficient solid acid catalyst, demonstrating remarkable utility in the one-pot synthesis of 2, 4, 5-trisubstituted imidazole and 1,4-dihydropyridine compounds, all achieved under solvent-free conditions. A facile co-precipitation method was used to synthesize nanostructured Fe-Cu binary oxide. Notably, this Fe-Cu binary oxide magnetic nanocatalyst proves its eco-friendly credentials as an exceptionally efficient and reusable catalyst, offering ease of handling, recovery, and multiple uses with minimal reactivity loss. Furthermore, the Fe (III)-Cu (II) binary oxide magnetic nanocatalyst's magnetic separability enhances its practicality, allowing for effortless catalyst retrieval after reactions. Significantly, the structural characteristics are meticulously elucidated through advanced analytical techniques, including 1 H and 13C nuclear magnetic resonance (NMR) spectroscopy. This work presents a versatile and sustainable solution for catalysis, with wide-reaching implications for green chemistry and the development of reusable, efficient catalysts for organic synthesis. The exceptional performance and eco-friendliness of the Fe-Cu binary oxide magnetic nanocatalyst underscore its practical significance. Fe-Cu binary oxide magnetic nanocatalyst exhibits the highest catalytic activity compared to others. The employment of this catalyst consistently delivers excellent yields in the target reactions, highlighting its potential to contribute positively to sustainable chemical processes.","PeriodicalId":18116,"journal":{"name":"Letters in Organic Chemistry","volume":"7 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115701786277621231226160450","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
: The Fe (III)-Cu (II) binary oxide magnetic nanocatalyst emerges as an environmentally friendly and highly efficient solid acid catalyst, demonstrating remarkable utility in the one-pot synthesis of 2, 4, 5-trisubstituted imidazole and 1,4-dihydropyridine compounds, all achieved under solvent-free conditions. A facile co-precipitation method was used to synthesize nanostructured Fe-Cu binary oxide. Notably, this Fe-Cu binary oxide magnetic nanocatalyst proves its eco-friendly credentials as an exceptionally efficient and reusable catalyst, offering ease of handling, recovery, and multiple uses with minimal reactivity loss. Furthermore, the Fe (III)-Cu (II) binary oxide magnetic nanocatalyst's magnetic separability enhances its practicality, allowing for effortless catalyst retrieval after reactions. Significantly, the structural characteristics are meticulously elucidated through advanced analytical techniques, including 1 H and 13C nuclear magnetic resonance (NMR) spectroscopy. This work presents a versatile and sustainable solution for catalysis, with wide-reaching implications for green chemistry and the development of reusable, efficient catalysts for organic synthesis. The exceptional performance and eco-friendliness of the Fe-Cu binary oxide magnetic nanocatalyst underscore its practical significance. Fe-Cu binary oxide magnetic nanocatalyst exhibits the highest catalytic activity compared to others. The employment of this catalyst consistently delivers excellent yields in the target reactions, highlighting its potential to contribute positively to sustainable chemical processes.
期刊介绍:
Aims & Scope
Letters in Organic Chemistry publishes original letters (short articles), research articles, mini-reviews and thematic issues based on mini-reviews and short articles, in all areas of organic chemistry including synthesis, bioorganic, medicinal, natural products, organometallic, supramolecular, molecular recognition and physical organic chemistry. The emphasis is to publish quality papers rapidly by taking full advantage of latest technology for both submission and review of the manuscripts.
The journal is an essential reading for all organic chemists belonging to both academia and industry.