Error Estimate of a Quasi-Monte Carlo Time-Splitting Pseudospectral Method for Nonlinear Schrödinger Equation with Random Potentials

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zhizhang Wu, Zhiwen Zhang, Xiaofei Zhao
{"title":"Error Estimate of a Quasi-Monte Carlo Time-Splitting Pseudospectral Method for Nonlinear Schrödinger Equation with Random Potentials","authors":"Zhizhang Wu, Zhiwen Zhang, Xiaofei Zhao","doi":"10.1137/22m1525181","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 1, Page 1-29, March 2024. <br/> Abstract. In this paper, we consider the numerical solution of a nonlinear Schrödinger equation with spatial random potential. The randomly shifted quasi-Monte Carlo (QMC) lattice rule combined with the time-splitting pseudospectral discretization is applied and analyzed. The nonlinearity in the equation induces difficulties in estimating the regularity of the solution in random space. By the technique of weighted Sobolev space, we identify the possible weights and show the existence of QMC that converges optimally at the almost-linear rate without dependence on dimensions. The full error estimate of the scheme is established. We present numerical results to verify the accuracy and investigate the wave propagation.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/22m1525181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 1, Page 1-29, March 2024.
Abstract. In this paper, we consider the numerical solution of a nonlinear Schrödinger equation with spatial random potential. The randomly shifted quasi-Monte Carlo (QMC) lattice rule combined with the time-splitting pseudospectral discretization is applied and analyzed. The nonlinearity in the equation induces difficulties in estimating the regularity of the solution in random space. By the technique of weighted Sobolev space, we identify the possible weights and show the existence of QMC that converges optimally at the almost-linear rate without dependence on dimensions. The full error estimate of the scheme is established. We present numerical results to verify the accuracy and investigate the wave propagation.
带随机势能的非线性薛定谔方程准蒙特卡洛时间分割伪谱法的误差估计
SIAM/ASA 不确定性量化期刊》,第 12 卷,第 1 期,第 1-29 页,2024 年 3 月。 摘要本文考虑了具有空间随机势的非线性薛定谔方程的数值求解。应用随机移动准蒙特卡罗(QMC)晶格规则结合时间分割伪谱离散化进行了分析。方程的非线性给估计随机空间解的正则性带来了困难。通过加权索波列夫空间技术,我们确定了可能的权重,并证明了 QMC 的存在,它以几乎线性的速度最佳收敛,且不依赖于维数。我们建立了该方案的全误差估计。我们给出了数值结果来验证其准确性,并研究了波的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信