{"title":"Differential gradient estimates for nonlinear parabolic equations under integral Ricci curvature bounds","authors":"Shahroud Azami","doi":"10.1007/s13398-024-01552-9","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\((M^{n},g)\\)</span> be a complete Riemannian manifold. We prove a space-time gradient estimates for positive solutions of nonlinear parabolic equations </p><span>$$\\begin{aligned} \\partial _{t}u(x,t)=\\Delta u(x,t)-p(x,t)A(u(x,t))-q(x,t) ( u(x,t))^{a+1}, \\end{aligned}$$</span><p>on geodesic balls <i>B</i>(<i>o</i>, <i>r</i>) in <i>M</i> with <span>\\(0<r\\le 1\\)</span> for <span>\\(s>\\frac{n}{2}\\)</span> when integral Ricci curvature <i>k</i>(<i>p</i>, 1) is small enough. By integrating the gradient estimates in space-time we derive the corresponding Harnack inequalities.</p>","PeriodicalId":21293,"journal":{"name":"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas","volume":"134 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13398-024-01552-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let \((M^{n},g)\) be a complete Riemannian manifold. We prove a space-time gradient estimates for positive solutions of nonlinear parabolic equations
on geodesic balls B(o, r) in M with \(0<r\le 1\) for \(s>\frac{n}{2}\) when integral Ricci curvature k(p, 1) is small enough. By integrating the gradient estimates in space-time we derive the corresponding Harnack inequalities.
让((M^{n},g))是一个完整的黎曼流形。我们证明了非线性抛物方程正解的时空梯度估计 $$\begin{aligned}\partial _{t}u(x,t)=\Delta u(x,t)-p(x,t)A(u(x,t))-q(x,t) ( u(x,t))^{a+1}, \end{aligned}$$ on geodesic balls B(o, r) in M with \(0<;当积分里奇曲率k(p, 1)足够小时,为(s>\frac{n}{2}\)。通过对梯度估计的时空积分,我们得出了相应的哈纳克不等式。