Differential gradient estimates for nonlinear parabolic equations under integral Ricci curvature bounds

Shahroud Azami
{"title":"Differential gradient estimates for nonlinear parabolic equations under integral Ricci curvature bounds","authors":"Shahroud Azami","doi":"10.1007/s13398-024-01552-9","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\((M^{n},g)\\)</span> be a complete Riemannian manifold. We prove a space-time gradient estimates for positive solutions of nonlinear parabolic equations </p><span>$$\\begin{aligned} \\partial _{t}u(x,t)=\\Delta u(x,t)-p(x,t)A(u(x,t))-q(x,t) ( u(x,t))^{a+1}, \\end{aligned}$$</span><p>on geodesic balls <i>B</i>(<i>o</i>, <i>r</i>) in <i>M</i> with <span>\\(0&lt;r\\le 1\\)</span> for <span>\\(s&gt;\\frac{n}{2}\\)</span> when integral Ricci curvature <i>k</i>(<i>p</i>, 1) is small enough. By integrating the gradient estimates in space-time we derive the corresponding Harnack inequalities.</p>","PeriodicalId":21293,"journal":{"name":"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas","volume":"134 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13398-024-01552-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \((M^{n},g)\) be a complete Riemannian manifold. We prove a space-time gradient estimates for positive solutions of nonlinear parabolic equations

$$\begin{aligned} \partial _{t}u(x,t)=\Delta u(x,t)-p(x,t)A(u(x,t))-q(x,t) ( u(x,t))^{a+1}, \end{aligned}$$

on geodesic balls B(or) in M with \(0<r\le 1\) for \(s>\frac{n}{2}\) when integral Ricci curvature k(p, 1) is small enough. By integrating the gradient estimates in space-time we derive the corresponding Harnack inequalities.

积分里奇曲率约束下非线性抛物方程的微分梯度估计
让((M^{n},g))是一个完整的黎曼流形。我们证明了非线性抛物方程正解的时空梯度估计 $$\begin{aligned}\partial _{t}u(x,t)=\Delta u(x,t)-p(x,t)A(u(x,t))-q(x,t) ( u(x,t))^{a+1}, \end{aligned}$$ on geodesic balls B(o, r) in M with \(0<;当积分里奇曲率k(p, 1)足够小时,为(s>\frac{n}{2}\)。通过对梯度估计的时空积分,我们得出了相应的哈纳克不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信