{"title":"Singular Yamabe problem for scalar flat metrics on the sphere","authors":"Aram L. Karakhanyan","doi":"10.1007/s00229-023-01527-x","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\Omega \\)</span> be a domain on the unit <i>n</i>-sphere <span>\\( {\\mathbb {S}}^n\\)</span> and <span>\\( \\overset{{\\,}_\\circ }{g}\\)</span> the standard metric of <span>\\({\\mathbb {S}}^n\\)</span>, <span>\\(n\\ge 3\\)</span>. We show that there exists a conformal metric <i>g</i> with vanishing scalar curvature <span>\\(R(g)=0\\)</span> such that <span>\\((\\Omega , g)\\)</span> is complete if and only if the Bessel capacity <span>\\({\\mathcal {C}}_{\\alpha , q}({\\mathbb {S}}^n\\setminus \\Omega )=0\\)</span>, where <span>\\(\\alpha =1+\\frac{2}{n}\\)</span> and <span>\\(q=\\frac{n}{2}\\)</span>. Our analysis utilizes some well known properties of capacity and Wolff potentials, as well as a version of the Hopf–Rinow theorem for the divergent curves.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-023-01527-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let \(\Omega \) be a domain on the unit n-sphere \( {\mathbb {S}}^n\) and \( \overset{{\,}_\circ }{g}\) the standard metric of \({\mathbb {S}}^n\), \(n\ge 3\). We show that there exists a conformal metric g with vanishing scalar curvature \(R(g)=0\) such that \((\Omega , g)\) is complete if and only if the Bessel capacity \({\mathcal {C}}_{\alpha , q}({\mathbb {S}}^n\setminus \Omega )=0\), where \(\alpha =1+\frac{2}{n}\) and \(q=\frac{n}{2}\). Our analysis utilizes some well known properties of capacity and Wolff potentials, as well as a version of the Hopf–Rinow theorem for the divergent curves.