{"title":"Effect of deposition time on the optical properties of vanadium pentoxide films grown on porous silicon nanostructure","authors":"Skander Ktifa, Mehdi Rahmani, Mongi Bouaicha","doi":"10.1007/s43153-023-00430-y","DOIUrl":null,"url":null,"abstract":"<p>Vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>) thin films were grown on porous silicon (PS) layer by electron beam evaporation technique under an oxygen partial pressure. The morphology of the porous surface before and after V<sub>2</sub>O<sub>5</sub> deposition for different evaporation times was observed by the Scanning Electron Microscope (SEM). The predicts changes of the chemical composition and bonds at the porous surface have been studied by FTIR and Raman spectroscopies. Photoluminescence (PL) spectroscopy was carried out to study the effect of vanadium pentoxide thickness on the optical properties of V<sub>2</sub>O<sub>5</sub>/PS nanocomposites. The PL spectrum of PS show a red-shift of 90 nm following the deposition of vanadium pentoxide while a quenching of the PL intensity was observed. Referring to FTIR and Raman results, the origin of this shift can be attributed to the formation of oxidized vanadium elements at PS surface as well as the creation of localized states by V<sub>2</sub>O<sub>5</sub> molecules inside the band gap of PS. The wavelength dependence of optical transmittance, reflectance and absorption coefficients were investigated. An increase in the optical band gap from 1.95 to 2.18 eV was obtained due to Moss-Burstein effect as well as the presence of vacancy defects in V<sub>2</sub>O<sub>5</sub> film.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-023-00430-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Vanadium pentoxide (V2O5) thin films were grown on porous silicon (PS) layer by electron beam evaporation technique under an oxygen partial pressure. The morphology of the porous surface before and after V2O5 deposition for different evaporation times was observed by the Scanning Electron Microscope (SEM). The predicts changes of the chemical composition and bonds at the porous surface have been studied by FTIR and Raman spectroscopies. Photoluminescence (PL) spectroscopy was carried out to study the effect of vanadium pentoxide thickness on the optical properties of V2O5/PS nanocomposites. The PL spectrum of PS show a red-shift of 90 nm following the deposition of vanadium pentoxide while a quenching of the PL intensity was observed. Referring to FTIR and Raman results, the origin of this shift can be attributed to the formation of oxidized vanadium elements at PS surface as well as the creation of localized states by V2O5 molecules inside the band gap of PS. The wavelength dependence of optical transmittance, reflectance and absorption coefficients were investigated. An increase in the optical band gap from 1.95 to 2.18 eV was obtained due to Moss-Burstein effect as well as the presence of vacancy defects in V2O5 film.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.