{"title":"Quantifying the effects of sensory stress on trophic cascades","authors":"","doi":"10.1007/s12080-024-00574-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Predators mediate the strength of trophic cascades indirectly by decreasing the number of prey consuming a basal resource and by altering prey responses that dictate prey foraging. The strength of these indirect effects further depends on abiotic factors. For example, attributes of the environment, such as turbulent flows in aquatic habitats that disrupt spatial information available from chemical cues, can impose “sensory stresses” that impair the ability of predators or prey to detect each other. The multi-faceted impacts of sensory stress on both the predators and prey create challenges in predicting the overall effect on the trophic cascade. Here, we explore how sensory stress affects the strength of trophic cascades using a tri-trophic dynamical model that incorporates the sensory environment and anti-predatory responses. We explore two crucial parameters that govern outcomes of the model. First, we allow predation rates to either strengthen or weaken depending on whether prey or predators are more sensitive to sensory stress, respectively. Second, we explore scenarios where anti-predatory responses can either drive a strong or weak reduction in prey foraging. We find that sensory stress usually weakens trophic cascades except in scenarios where predators are relatively unaffected by sensory stress and the loss of anti-predatory responses does not affect prey foraging. The model finally suggests that “hydra effects” can manifest, whereby an increase in prey population occurs despite an increase in per capita predation. This last feature emerges due to the interaction between logistic growth of the basal resource and anti-predatory responses reducing the over-consumption of the basal resource.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12080-024-00574-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Predators mediate the strength of trophic cascades indirectly by decreasing the number of prey consuming a basal resource and by altering prey responses that dictate prey foraging. The strength of these indirect effects further depends on abiotic factors. For example, attributes of the environment, such as turbulent flows in aquatic habitats that disrupt spatial information available from chemical cues, can impose “sensory stresses” that impair the ability of predators or prey to detect each other. The multi-faceted impacts of sensory stress on both the predators and prey create challenges in predicting the overall effect on the trophic cascade. Here, we explore how sensory stress affects the strength of trophic cascades using a tri-trophic dynamical model that incorporates the sensory environment and anti-predatory responses. We explore two crucial parameters that govern outcomes of the model. First, we allow predation rates to either strengthen or weaken depending on whether prey or predators are more sensitive to sensory stress, respectively. Second, we explore scenarios where anti-predatory responses can either drive a strong or weak reduction in prey foraging. We find that sensory stress usually weakens trophic cascades except in scenarios where predators are relatively unaffected by sensory stress and the loss of anti-predatory responses does not affect prey foraging. The model finally suggests that “hydra effects” can manifest, whereby an increase in prey population occurs despite an increase in per capita predation. This last feature emerges due to the interaction between logistic growth of the basal resource and anti-predatory responses reducing the over-consumption of the basal resource.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.