On lattice extensions

Maxwell Forst, Lenny Fukshansky
{"title":"On lattice extensions","authors":"Maxwell Forst, Lenny Fukshansky","doi":"10.1007/s00605-023-01935-x","DOIUrl":null,"url":null,"abstract":"<p>A lattice <span>\\(\\Lambda \\)</span> is said to be an extension of a sublattice <i>L</i> of smaller rank if <i>L</i> is equal to the intersection of <span>\\(\\Lambda \\)</span> with the subspace spanned by <i>L</i>. The goal of this paper is to initiate a systematic study of the geometry of lattice extensions. We start by proving the existence of a small-determinant extension of a given lattice, and then look at successive minima and covering radius. To this end, we investigate extensions (within an ambient lattice) preserving the successive minima of the given lattice, as well as extensions preserving the covering radius. We also exhibit some interesting arithmetic properties of deep holes of planar lattices.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-023-01935-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A lattice \(\Lambda \) is said to be an extension of a sublattice L of smaller rank if L is equal to the intersection of \(\Lambda \) with the subspace spanned by L. The goal of this paper is to initiate a systematic study of the geometry of lattice extensions. We start by proving the existence of a small-determinant extension of a given lattice, and then look at successive minima and covering radius. To this end, we investigate extensions (within an ambient lattice) preserving the successive minima of the given lattice, as well as extensions preserving the covering radius. We also exhibit some interesting arithmetic properties of deep holes of planar lattices.

Abstract Image

关于晶格扩展
如果 L 等于 \(\Lambda \)与 L 所跨子空间的交集,那么一个网格 \(\Lambda \)就可以说是一个秩较小的子网格 L 的扩展。我们首先证明给定网格的小确定性扩展的存在,然后研究连续最小值和覆盖半径。为此,我们研究了保留给定网格的连续最小值的扩展(在环境网格内),以及保留覆盖半径的扩展。我们还展示了平面网格深洞的一些有趣的算术性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信