A large-scale study of peptide features defining immunogenicity of cancer neo-epitopes.

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
NAR cancer Pub Date : 2024-01-29 eCollection Date: 2024-03-01 DOI:10.1093/narcan/zcae002
Yat-Tsai Richie Wan, Zeynep Koşaloğlu-Yalçın, Bjoern Peters, Morten Nielsen
{"title":"A large-scale study of peptide features defining immunogenicity of cancer neo-epitopes.","authors":"Yat-Tsai Richie Wan, Zeynep Koşaloğlu-Yalçın, Bjoern Peters, Morten Nielsen","doi":"10.1093/narcan/zcae002","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate prediction of immunogenicity for neo-epitopes arising from a cancer associated mutation is a crucial step in many bioinformatics pipelines that predict outcome of checkpoint blockade treatments or that aim to design personalised cancer immunotherapies and vaccines. In this study, we performed a comprehensive analysis of peptide features relevant for prediction of immunogenicity using the Cancer Epitope Database and Analysis Resource (CEDAR), a curated database of cancer epitopes with experimentally validated immunogenicity annotations from peer-reviewed publications. The developed model, ICERFIRE (ICore-based Ensemble Random Forest for neo-epitope Immunogenicity pREdiction), extracts the predicted ICORE from the full neo-epitope as input, i.e. the nested peptide with the highest predicted major histocompatibility complex (MHC) binding potential combined with its predicted likelihood of antigen presentation (%Rank). Key additional features integrated into the model include assessment of the BLOSUM mutation score of the neo-epitope, and antigen expression levels of the wild-type counterpart which is often reflecting a neo-epitope's abundance. We demonstrate improved and robust performance of ICERFIRE over existing immunogenicity and epitope prediction models, both in cross-validation and on external validation datasets.</p>","PeriodicalId":94149,"journal":{"name":"NAR cancer","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823584/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/narcan/zcae002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of immunogenicity for neo-epitopes arising from a cancer associated mutation is a crucial step in many bioinformatics pipelines that predict outcome of checkpoint blockade treatments or that aim to design personalised cancer immunotherapies and vaccines. In this study, we performed a comprehensive analysis of peptide features relevant for prediction of immunogenicity using the Cancer Epitope Database and Analysis Resource (CEDAR), a curated database of cancer epitopes with experimentally validated immunogenicity annotations from peer-reviewed publications. The developed model, ICERFIRE (ICore-based Ensemble Random Forest for neo-epitope Immunogenicity pREdiction), extracts the predicted ICORE from the full neo-epitope as input, i.e. the nested peptide with the highest predicted major histocompatibility complex (MHC) binding potential combined with its predicted likelihood of antigen presentation (%Rank). Key additional features integrated into the model include assessment of the BLOSUM mutation score of the neo-epitope, and antigen expression levels of the wild-type counterpart which is often reflecting a neo-epitope's abundance. We demonstrate improved and robust performance of ICERFIRE over existing immunogenicity and epitope prediction models, both in cross-validation and on external validation datasets.

对确定癌症新表位免疫原性的多肽特征进行大规模研究。
准确预测癌症相关突变产生的新表位的免疫原性是许多生物信息学管道的关键步骤,这些管道用于预测检查点阻断疗法的结果或设计个性化的癌症免疫疗法和疫苗。在这项研究中,我们利用癌症表位数据库和分析资源(CEDAR)对与免疫原性预测相关的多肽特征进行了全面分析,CEDAR 是一个经过整理的癌症表位数据库,其中的免疫原性注释均来自同行评议刊物。所开发的 ICERFIRE(基于 ICore 的新表位免疫原性预测组合随机森林)模型从作为输入的完整新表位中提取预测的 ICORE,即具有最高预测主要组织相容性复合体(MHC)结合潜力的嵌套肽及其预测的抗原呈递可能性(%Rank)。集成到模型中的关键附加功能包括评估新表位的 BLOSUM 突变得分和野生型对应物的抗原表达水平,后者通常反映了新表位的丰度。在交叉验证和外部验证数据集上,我们证明了 ICERFIRE 比现有的免疫原性和表位预测模型性能更强、更稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信