Unveiling fructose and glucose binding to human serum albumin: fluorescence measurements and docking, molecular dynamics and quantum biochemistry computations.

IF 2.4 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
André Hadad, Victor L B França, Marcos William Crisostomo, Kellen Brunaldi, Hernandes F Carvalho, Valder N Freire
{"title":"Unveiling fructose and glucose binding to human serum albumin: fluorescence measurements and docking, molecular dynamics and quantum biochemistry computations.","authors":"André Hadad, Victor L B França, Marcos William Crisostomo, Kellen Brunaldi, Hernandes F Carvalho, Valder N Freire","doi":"10.1080/07391102.2024.2310211","DOIUrl":null,"url":null,"abstract":"<p><p>This research examines the interaction between human serum albumin (HSA) and various sugar forms (β-D-fructofuranose (FRC), α-D-glucopyranose (GLC), Keto-D-fructose (FRO), Aldehydo-D-glucose (GLO), and modified Aldehydo-D-glucose (GLOm)) using fluorescent spectroscopy, molecular docking simulations, molecular dynamics, protein conformational clusters (EnGens), molecular fractionation with conjugate caps (MFCC) and quantum biochemistry analysis. We analyze molecular and quantum aspects, uncovering interaction energies between sugar atoms and amino acids. Total interaction energy considers protein fragmentation, energetic decomposition, and interaction energy from a bottom-up perspective. Molecular dynamics reveal that unmodified Aldehydo-D-glucose (GLO) escapes HSA binding sites, explaining gradual glycation. We pioneer studying HSA's binding mechanism with glucose and fructose in a 1:1 ratio using long molecular dynamics simulations. Results suggest the transitional GLOm form has a higher Sudlow I site propensity than unmodified glucose, crucial for K195 glycation. FRO and GLOm interaction tendencies move toward a deeper FA7 cavity, near its center. This approach effectively elucidates small molecule binding mechanisms, consistent with previous experimental results.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"6770-6790"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2310211","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This research examines the interaction between human serum albumin (HSA) and various sugar forms (β-D-fructofuranose (FRC), α-D-glucopyranose (GLC), Keto-D-fructose (FRO), Aldehydo-D-glucose (GLO), and modified Aldehydo-D-glucose (GLOm)) using fluorescent spectroscopy, molecular docking simulations, molecular dynamics, protein conformational clusters (EnGens), molecular fractionation with conjugate caps (MFCC) and quantum biochemistry analysis. We analyze molecular and quantum aspects, uncovering interaction energies between sugar atoms and amino acids. Total interaction energy considers protein fragmentation, energetic decomposition, and interaction energy from a bottom-up perspective. Molecular dynamics reveal that unmodified Aldehydo-D-glucose (GLO) escapes HSA binding sites, explaining gradual glycation. We pioneer studying HSA's binding mechanism with glucose and fructose in a 1:1 ratio using long molecular dynamics simulations. Results suggest the transitional GLOm form has a higher Sudlow I site propensity than unmodified glucose, crucial for K195 glycation. FRO and GLOm interaction tendencies move toward a deeper FA7 cavity, near its center. This approach effectively elucidates small molecule binding mechanisms, consistent with previous experimental results.

揭示果糖和葡萄糖与人类血清白蛋白的结合:荧光测量和对接、分子动力学和量子生物化学计算。
本研究利用荧光光谱、分子对接模拟、分子动力学、蛋白质构象簇(EnGens)、分子簇(EnGens)、分子簇(EnGens)等方法,研究了人血清白蛋白(HSA)与各种糖形式(β-D-呋喃果糖(FRC)、α-D-吡喃葡萄糖(GLC)、酮-D-果糖(FRO)、脱水-D-葡萄糖(GLO)和修饰脱水-D-葡萄糖(GLOm))之间的相互作用、和修饰的醛基-D-葡萄糖(GLOm))的分子构象簇(EnGens)、共轭帽分子分馏(MFCC)和量子生物化学分析。我们从分子和量子方面进行分析,揭示糖原子和氨基酸之间的相互作用能。总相互作用能从自下而上的角度考虑了蛋白质碎裂、能量分解和相互作用能。分子动力学揭示了未修饰的醛基-D-葡萄糖(GLO)从 HSA 结合位点逃逸,从而解释了逐渐糖化的原因。我们利用长时间分子动力学模拟,率先研究了 HSA 与葡萄糖和果糖以 1:1 的比例结合的机制。结果表明,过渡形态的 GLOm 比未修饰的葡萄糖具有更高的 Sudlow I 位点倾向性,这对 K195 糖化至关重要。FRO 和 GLOm 的相互作用倾向于向更深的 FA7 腔移动,靠近其中心。这种方法有效地阐明了小分子结合机制,与之前的实验结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信