{"title":"Computer aided aptamer selection for fabrication of electrochemical sensor to detect Aflatoxin B<sub>1</sub>.","authors":"Misgana Mengistu Asmare, Chandran Krishnaraj, Sivaprakasam Radhakrishnan, Byoung-Sukh Kim, Soon-Il Yun","doi":"10.1080/07391102.2024.2308760","DOIUrl":null,"url":null,"abstract":"<p><p>Aflatoxin B<sub>1</sub> (AFB<sub>1</sub>) is a naturally occurring toxin produced by <i>Aspergillus flavus</i> and <i>Aspergillus parasiticus.</i> The AFB<sub>1</sub> is classified as a potent carcinogen and poses significant health risks both to humans and animals. Early detection of the toxin in post-harvest agricultural products will save lives and promote healthy food production. In this study, stratified docking approach was utilized to screen and identify potential aptamers that can bind to AFB<sub>1</sub>. ssDNA sequences were acquired from the Mendeley dataset, secondary and tertiary structures were predicted through a series of bioinformatics pipelines. Further, the final DNA tertiary structures were minimized and SiteMap algorithm was used to probe and locate binding cavities. According to the final XP docking result, a 34 nt sequence (5'-ATCCTGTGAGGAATGCTCATGCATAGCAAGGGCT-3') aptamer with a docking score of -5.959 kcal/mol was considered for 200 ns MD Simulation. Finally, the screened DNA-aptamer was immobilized over the gold surface based on Au-S chemistry and utilized for the detection of AFB<sub>1</sub>. The fabricated DNA-aptamer electrode demonstrated a good analytical performance including wide linear range (1.0 to 1000 ng L<sup>-1</sup>), detection limit (1.0 ng L<sup>-1</sup>), high stability, and reproducibility.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"3190-3203"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2308760","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aflatoxin B1 (AFB1) is a naturally occurring toxin produced by Aspergillus flavus and Aspergillus parasiticus. The AFB1 is classified as a potent carcinogen and poses significant health risks both to humans and animals. Early detection of the toxin in post-harvest agricultural products will save lives and promote healthy food production. In this study, stratified docking approach was utilized to screen and identify potential aptamers that can bind to AFB1. ssDNA sequences were acquired from the Mendeley dataset, secondary and tertiary structures were predicted through a series of bioinformatics pipelines. Further, the final DNA tertiary structures were minimized and SiteMap algorithm was used to probe and locate binding cavities. According to the final XP docking result, a 34 nt sequence (5'-ATCCTGTGAGGAATGCTCATGCATAGCAAGGGCT-3') aptamer with a docking score of -5.959 kcal/mol was considered for 200 ns MD Simulation. Finally, the screened DNA-aptamer was immobilized over the gold surface based on Au-S chemistry and utilized for the detection of AFB1. The fabricated DNA-aptamer electrode demonstrated a good analytical performance including wide linear range (1.0 to 1000 ng L-1), detection limit (1.0 ng L-1), high stability, and reproducibility.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.