Dual Chimeric Antigen Receptor T Cells Targeting CD38 and SLAMF7 with Independent Signaling Demonstrate Preclinical Efficacy and Safety in Multiple Myeloma.
Nathalie Roders, Cecilia Nakid-Cordero, Fabio Raineri, Maxime Fayon, Audrey Abecassis, Caroline Choisy, Elisabeth Nelson, Claire Maillard, David Garrick, Alexis Talbot, Jean-Paul Fermand, Bertrand Arnulf, Jean-Christophe Bories
{"title":"Dual Chimeric Antigen Receptor T Cells Targeting CD38 and SLAMF7 with Independent Signaling Demonstrate Preclinical Efficacy and Safety in Multiple Myeloma.","authors":"Nathalie Roders, Cecilia Nakid-Cordero, Fabio Raineri, Maxime Fayon, Audrey Abecassis, Caroline Choisy, Elisabeth Nelson, Claire Maillard, David Garrick, Alexis Talbot, Jean-Paul Fermand, Bertrand Arnulf, Jean-Christophe Bories","doi":"10.1158/2326-6066.CIR-23-0839","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T-cell therapy for multiple myeloma targeting B-cell maturation antigen (BCMA) induces high overall response rates. However, relapse still occurs and novel strategies for targeting multiple myeloma cells using CAR T-cell therapy are needed. SLAMF7 (also known as CS1) and CD38 on tumor plasma cells represent potential alternative targets for CAR T-cell therapy in multiple myeloma, but their expression on activated T cells and other hematopoietic cells raises concerns about the efficacy and safety of such treatments. Here, we used CRISPR/Cas9 deletion of the CD38 gene in T cells and developed DCAR, a double CAR system targeting CD38 and CS1 through activation and costimulation receptors, respectively. Inactivation of CD38 enhanced the anti-multiple myeloma activity of DCAR T in vitro. Edited DCAR T cells showed strong in vitro and in vivo responses specifically against target cells expressing both CD38 and CS1. Furthermore, we provide evidence that, unlike anti-CD38 CAR T-cell therapy, which elicited a rapid immune reaction against hematopoietic cells in a humanized mouse model, DCAR T cells showed no signs of toxicity. Thus, DCAR T cells could provide a safe and efficient alternative to anti-BCMA CAR T-cell therapy to treat patients with multiple myeloma.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-23-0839","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chimeric antigen receptor (CAR) T-cell therapy for multiple myeloma targeting B-cell maturation antigen (BCMA) induces high overall response rates. However, relapse still occurs and novel strategies for targeting multiple myeloma cells using CAR T-cell therapy are needed. SLAMF7 (also known as CS1) and CD38 on tumor plasma cells represent potential alternative targets for CAR T-cell therapy in multiple myeloma, but their expression on activated T cells and other hematopoietic cells raises concerns about the efficacy and safety of such treatments. Here, we used CRISPR/Cas9 deletion of the CD38 gene in T cells and developed DCAR, a double CAR system targeting CD38 and CS1 through activation and costimulation receptors, respectively. Inactivation of CD38 enhanced the anti-multiple myeloma activity of DCAR T in vitro. Edited DCAR T cells showed strong in vitro and in vivo responses specifically against target cells expressing both CD38 and CS1. Furthermore, we provide evidence that, unlike anti-CD38 CAR T-cell therapy, which elicited a rapid immune reaction against hematopoietic cells in a humanized mouse model, DCAR T cells showed no signs of toxicity. Thus, DCAR T cells could provide a safe and efficient alternative to anti-BCMA CAR T-cell therapy to treat patients with multiple myeloma.
期刊介绍:
Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes.
Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.