Local Well-Posedness of the Skew Mean Curvature Flow for Small Data in \(d\geqq 2\) Dimensions

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jiaxi Huang, Daniel Tataru
{"title":"Local Well-Posedness of the Skew Mean Curvature Flow for Small Data in \\(d\\geqq 2\\) Dimensions","authors":"Jiaxi Huang,&nbsp;Daniel Tataru","doi":"10.1007/s00205-023-01952-y","DOIUrl":null,"url":null,"abstract":"<div><p>The skew mean curvature flow is an evolution equation for <i>d</i> dimensional manifolds embedded in <span>\\({\\mathbb {R}}^{d+2}\\)</span> (or more generally, in a Riemannian manifold). It can be viewed as a Schrödinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schrödinger Map equation. In an earlier paper, the authors introduced a harmonic/Coulomb gauge formulation of the problem, and used it to prove small data local well-posedness in dimensions <span>\\(d \\geqq 4\\)</span>. In this article, we prove small data local well-posedness in low-regularity Sobolev spaces for the skew mean curvature flow in dimension <span>\\(d\\geqq 2\\)</span>. This is achieved by introducing a new, heat gauge formulation of the equations, which turns out to be more robust in low dimensions.\n</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811054/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-023-01952-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The skew mean curvature flow is an evolution equation for d dimensional manifolds embedded in \({\mathbb {R}}^{d+2}\) (or more generally, in a Riemannian manifold). It can be viewed as a Schrödinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schrödinger Map equation. In an earlier paper, the authors introduced a harmonic/Coulomb gauge formulation of the problem, and used it to prove small data local well-posedness in dimensions \(d \geqq 4\). In this article, we prove small data local well-posedness in low-regularity Sobolev spaces for the skew mean curvature flow in dimension \(d\geqq 2\). This is achieved by introducing a new, heat gauge formulation of the equations, which turns out to be more robust in low dimensions.

Abstract Image

d≧2维小数据斜均值曲率流的局部拟合优度
倾斜平均曲率流是嵌入 Rd+2 (或更一般地嵌入黎曼流形)的 d 维流形的演化方程。它可以看作是平均曲率流的薛定谔类似方程,也可以看作是薛定谔图方程的准线性版本。在早先的一篇论文中,作者介绍了该问题的谐波/库仑计公式,并用它证明了维数 d≧4 的小数据局部好求性。在本文中,我们证明了在维数 d≧2 的低规则性 Sobolev 空间中偏斜均值曲率流的小数据局部好求性。这是通过对方程引入一种新的热规公式来实现的,该公式在低维度下更为稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信