Design, synthesis, molecular modeling, and biological evaluations of novel chalcone based 4-Nitroacetophenone derivatives as potent anticancer agents targeting EGFR-TKD.
Showkat Ahmad Mir, Narayan Murmu, Rajesh Kumar Meher, Iswar Baitharu, Binata Nayak, Andleeb Khan, Mohammad Imran Khan, Wesam H Abdulaal
{"title":"Design, synthesis, molecular modeling, and biological evaluations of novel chalcone based 4-Nitroacetophenone derivatives as potent anticancer agents targeting EGFR-TKD.","authors":"Showkat Ahmad Mir, Narayan Murmu, Rajesh Kumar Meher, Iswar Baitharu, Binata Nayak, Andleeb Khan, Mohammad Imran Khan, Wesam H Abdulaal","doi":"10.1080/07391102.2024.2301746","DOIUrl":null,"url":null,"abstract":"<p><p>A series of chalcone-based 4-Nitroacetophenone derivatives were designed and synthesized by the single-step condensation method. These compounds were identified by <sup>1</sup>H NMR,<sup>13</sup>C NMR, MS, and FTIR analysis. Further, the derivatives were evaluated against four cancer cell lines H1299, MCF-7, HepG2, and K526. The IC<sub>50</sub> value of potent compounds NCH-2, NCH-4, NCH-5, NCH-6, NCH-8, and NCH-10 was 4.5-11.4 μM in H1299, 4.3-15.7 μM in MCF-7, 2.7-4.1 μM in HepG2 and 4.9-19.7 μM in K562. To assess the toxicity against healthy cells all potent molecules were evaluated against the HEK-293T cell line, and IC<sub>50</sub> values exhibited by NCH-2, and NCH-3 were 77.8, 74.3, and other molecules showed IC<sub>50</sub> values > 100 μM. The EGFR expression was determined by using rabbit anti-EGFR monoclonal antibody and significant EGFR expression was knocked down observed in H1299 treated with NCH-10 as well as erlotinib. The underlying mechanism behind cell death was investigated through bioinformatics. First, the molecules were optimized and docked to the binding site of the EGFR kinase domain. The best complexes were simulated for 100-ns and compounds NCH-2, NCH-4, and NCH-10 achieved stability similar to the erlotinib bound kinase domain. The free energy binding (Δ<i>G</i><sub>bind</sub>) of NCH-10 was found to be more negative -226.616 ± 2.148 kJ/mol calculated by Molecular Mechanics Poisson Boltzmann's Surface Area (MM-PBSA) method. Both <i>in vitro</i> and <i>in silico</i> results conclude that the present class of chalcone-based 4-Nitroacetophenone derivatives are potent anti-cancer agents targeting EGFR-TKD and are 39 folds more effective against H1299, MCF-7, HepG2, and K562 carcinoma cell lines than healthy HEK-293T cell lines.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"4095-4110"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2301746","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A series of chalcone-based 4-Nitroacetophenone derivatives were designed and synthesized by the single-step condensation method. These compounds were identified by 1H NMR,13C NMR, MS, and FTIR analysis. Further, the derivatives were evaluated against four cancer cell lines H1299, MCF-7, HepG2, and K526. The IC50 value of potent compounds NCH-2, NCH-4, NCH-5, NCH-6, NCH-8, and NCH-10 was 4.5-11.4 μM in H1299, 4.3-15.7 μM in MCF-7, 2.7-4.1 μM in HepG2 and 4.9-19.7 μM in K562. To assess the toxicity against healthy cells all potent molecules were evaluated against the HEK-293T cell line, and IC50 values exhibited by NCH-2, and NCH-3 were 77.8, 74.3, and other molecules showed IC50 values > 100 μM. The EGFR expression was determined by using rabbit anti-EGFR monoclonal antibody and significant EGFR expression was knocked down observed in H1299 treated with NCH-10 as well as erlotinib. The underlying mechanism behind cell death was investigated through bioinformatics. First, the molecules were optimized and docked to the binding site of the EGFR kinase domain. The best complexes were simulated for 100-ns and compounds NCH-2, NCH-4, and NCH-10 achieved stability similar to the erlotinib bound kinase domain. The free energy binding (ΔGbind) of NCH-10 was found to be more negative -226.616 ± 2.148 kJ/mol calculated by Molecular Mechanics Poisson Boltzmann's Surface Area (MM-PBSA) method. Both in vitro and in silico results conclude that the present class of chalcone-based 4-Nitroacetophenone derivatives are potent anti-cancer agents targeting EGFR-TKD and are 39 folds more effective against H1299, MCF-7, HepG2, and K562 carcinoma cell lines than healthy HEK-293T cell lines.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.