Cauchy data for Levin’s method

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Anthony Ashton
{"title":"Cauchy data for Levin’s method","authors":"Anthony Ashton","doi":"10.1093/imanum/drad106","DOIUrl":null,"url":null,"abstract":"In this paper, we describe the Cauchy data that gives rise to slowly oscillating solutions to the Levin equation. We present a general result on the existence of a unique minimizer of $\\|Bx\\|$ subject to the constraint $Ax=y$, where $A,B$ are linear, but not necessarily bounded operators on a complex Hilbert space. This result is used to obtain the solution to the Levin equation, both in the univariate and multivariate case, which minimizes the mean-square of the derivative over the domain. The Cauchy data that generates this solution is then obtained, and this can be used to supplement the Levin equation in the computation of highly oscillatory integrals in the presence of stationary points.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"20 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drad106","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we describe the Cauchy data that gives rise to slowly oscillating solutions to the Levin equation. We present a general result on the existence of a unique minimizer of $\|Bx\|$ subject to the constraint $Ax=y$, where $A,B$ are linear, but not necessarily bounded operators on a complex Hilbert space. This result is used to obtain the solution to the Levin equation, both in the univariate and multivariate case, which minimizes the mean-square of the derivative over the domain. The Cauchy data that generates this solution is then obtained, and this can be used to supplement the Levin equation in the computation of highly oscillatory integrals in the presence of stationary points.
列文方法的柯西数据
在本文中,我们描述了引起列文方程缓慢振荡解的柯西数据。我们提出了一个关于存在唯一最小值 $\|Bx\|$ 的一般结果,该最小值受限于 $Ax=y$,其中 $A,B$ 是复希尔伯特空间上的线性算子,但不一定是有界算子。这一结果可用于求得莱文方程的解,无论是单变量还是多变量情况,都能使域上导数的均方最小。然后就能得到产生这个解的柯西数据,在计算存在静止点的高度振荡积分时,可以用这个数据来补充莱文方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信