Conserved and divergent features of trophoblast stem cells.

IF 3.6 4区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Journal of molecular endocrinology Pub Date : 2024-02-19 Print Date: 2024-05-01 DOI:10.1530/JME-23-0131
Nirvay Sah, Francesca Soncin
{"title":"Conserved and divergent features of trophoblast stem cells.","authors":"Nirvay Sah, Francesca Soncin","doi":"10.1530/JME-23-0131","DOIUrl":null,"url":null,"abstract":"<p><p>Trophoblast stem cells (TSCs) are a proliferative multipotent population derived from the trophectoderm of the blastocyst, which will give rise to all the functional cell types of the trophoblast compartment of the placenta. The isolation and culture of TSCs in vitro represent a robust model to study mechanisms of trophoblast differentiation into mature cells both in successful and diseased pregnancy. Despite the highly conserved functions of the placenta, there is extreme variability in placental morphology, fetal-maternal interface, and development among eutherian mammals. This review aims to summarize the establishment and maintenance of TSCs in mammals such as primates, including human, rodents, and nontraditional animal models with a primary emphasis on epigenetic regulation of their origin while defining gaps in the current literature and areas of further development. FGF signaling is critical for mouse TSCs but dispensable for derivation of TSCs in other species. Human, simian, and bovine TSCs have much more complicated requirements of signaling pathways including activation of WNT and inhibition of TGFβ cascades. Epigenetic features such as DNA and histone methylation as well as histone acetylation are dynamic during development and are expressed in cell- and gestational age-specific pattern in placental trophoblasts. While TSCs from different species seem to recapitulate some select epigenomic features, there is a limitation in the comprehensive understanding of TSCs and how well TSCs retain placental epigenetic marks. Therefore, future studies should be directed at investigating epigenomic features of global and placental-specific gene expression in primary trophoblasts and TSCs.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11008758/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JME-23-0131","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Trophoblast stem cells (TSCs) are a proliferative multipotent population derived from the trophectoderm of the blastocyst, which will give rise to all the functional cell types of the trophoblast compartment of the placenta. The isolation and culture of TSCs in vitro represent a robust model to study mechanisms of trophoblast differentiation into mature cells both in successful and diseased pregnancy. Despite the highly conserved functions of the placenta, there is extreme variability in placental morphology, fetal-maternal interface, and development among eutherian mammals. This review aims to summarize the establishment and maintenance of TSCs in mammals such as primates, including human, rodents, and nontraditional animal models with a primary emphasis on epigenetic regulation of their origin while defining gaps in the current literature and areas of further development. FGF signaling is critical for mouse TSCs but dispensable for derivation of TSCs in other species. Human, simian, and bovine TSCs have much more complicated requirements of signaling pathways including activation of WNT and inhibition of TGFβ cascades. Epigenetic features such as DNA and histone methylation as well as histone acetylation are dynamic during development and are expressed in cell- and gestational age-specific pattern in placental trophoblasts. While TSCs from different species seem to recapitulate some select epigenomic features, there is a limitation in the comprehensive understanding of TSCs and how well TSCs retain placental epigenetic marks. Therefore, future studies should be directed at investigating epigenomic features of global and placental-specific gene expression in primary trophoblasts and TSCs.

滋养层干细胞的保守和分化特征
滋养层干细胞(TSC)是源自胚泡滋养层的增殖性多能细胞群,它将产生胎盘滋养层的所有功能细胞类型。TSC的分离和体外培养是研究成功妊娠和疾病妊娠中滋养层分化为成熟细胞机制的有力模型。尽管胎盘的功能高度保守,但胎盘形态、胎儿/母体界面和发育在古希腊哺乳动物中却存在极大的差异。本综述旨在总结TSC在灵长类等哺乳动物(包括人类、啮齿类动物和非传统动物模型)中的建立和维持,主要强调其起源的表观遗传调控,同时界定目前文献中的空白和进一步发展的领域。FGF 信号传导对小鼠 TSC 至关重要,但对其他物种的 TSC 衍变则无关紧要。人、猴和牛 TSC 对信号通路的要求要复杂得多,包括激活 WNT 和抑制 TGFβ 级联。DNA和组蛋白甲基化以及组蛋白乙酰化等表观遗传学特征在胎盘滋养细胞的发育过程中是动态的,并以细胞和孕龄特异性模式表达。虽然不同物种的TSC似乎重现了某些选择性表观遗传学特征,但对TSC的全面了解以及TSC保留胎盘表观遗传学标记的程度还很有限。因此,未来的研究应着眼于调查原代滋养细胞和TSC中全局和胎盘特异性基因表达的表观遗传学特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of molecular endocrinology
Journal of molecular endocrinology 医学-内分泌学与代谢
CiteScore
6.90
自引率
0.00%
发文量
96
审稿时长
1 months
期刊介绍: The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia. Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信