Radiomics Boosts Deep Learning Model for IPMN Classification.

Lanhong Yao, Zheyuan Zhang, Ugur Demir, Elif Keles, Camila Vendrami, Emil Agarunov, Candice Bolan, Ivo Schoots, Marc Bruno, Rajesh Keswani, Frank Miller, Tamas Gonda, Cemal Yazici, Temel Tirkes, Michael Wallace, Concetto Spampinato, Ulas Bagci
{"title":"Radiomics Boosts Deep Learning Model for IPMN Classification.","authors":"Lanhong Yao, Zheyuan Zhang, Ugur Demir, Elif Keles, Camila Vendrami, Emil Agarunov, Candice Bolan, Ivo Schoots, Marc Bruno, Rajesh Keswani, Frank Miller, Tamas Gonda, Cemal Yazici, Temel Tirkes, Michael Wallace, Concetto Spampinato, Ulas Bagci","doi":"10.1007/978-3-031-45676-3_14","DOIUrl":null,"url":null,"abstract":"<p><p>Intraductal Papillary Mucinous Neoplasm (IPMN) cysts are pre-malignant pancreas lesions, and they can progress into pancreatic cancer. Therefore, detecting and stratifying their risk level is of ultimate importance for effective treatment planning and disease control. However, this is a highly challenging task because of the diverse and irregular shape, texture, and size of the IPMN cysts as well as the pancreas. In this study, we propose a novel computer-aided diagnosis pipeline for IPMN risk classification from multi-contrast MRI scans. Our proposed analysis framework includes an efficient volumetric self-adapting segmentation strategy for pancreas delineation, followed by a newly designed deep learning-based classification scheme with a radiomics-based predictive approach. We test our proposed decision-fusion model in multi-center data sets of 246 multi-contrast MRI scans and obtain superior performance to the state of the art (SOTA) in this field. Our ablation studies demonstrate the significance of both radiomics and deep learning modules for achieving the new SOTA performance compared to international guidelines and published studies (81.9% vs 61.3% in accuracy). Our findings have important implications for clinical decision-making. In a series of rigorous experiments on multi-center data sets (246 MRI scans from five centers), we achieved unprecedented performance (81.9% accuracy). The code is available upon publication.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"14349 ","pages":"134-143"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810260/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in medical imaging. MLMI (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-45676-3_14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intraductal Papillary Mucinous Neoplasm (IPMN) cysts are pre-malignant pancreas lesions, and they can progress into pancreatic cancer. Therefore, detecting and stratifying their risk level is of ultimate importance for effective treatment planning and disease control. However, this is a highly challenging task because of the diverse and irregular shape, texture, and size of the IPMN cysts as well as the pancreas. In this study, we propose a novel computer-aided diagnosis pipeline for IPMN risk classification from multi-contrast MRI scans. Our proposed analysis framework includes an efficient volumetric self-adapting segmentation strategy for pancreas delineation, followed by a newly designed deep learning-based classification scheme with a radiomics-based predictive approach. We test our proposed decision-fusion model in multi-center data sets of 246 multi-contrast MRI scans and obtain superior performance to the state of the art (SOTA) in this field. Our ablation studies demonstrate the significance of both radiomics and deep learning modules for achieving the new SOTA performance compared to international guidelines and published studies (81.9% vs 61.3% in accuracy). Our findings have important implications for clinical decision-making. In a series of rigorous experiments on multi-center data sets (246 MRI scans from five centers), we achieved unprecedented performance (81.9% accuracy). The code is available upon publication.

放射组学提升了用于 IPMN 分类的深度学习模型。
导管内乳头状黏液瘤(IPMN)囊肿是胰腺恶性肿瘤的前期病变,可发展为胰腺癌。因此,检测其风险水平并对其进行分层对于制定有效的治疗计划和控制疾病至关重要。然而,由于 IPMN 囊肿和胰腺的形状、质地和大小各不相同且不规则,因此这是一项极具挑战性的任务。在本研究中,我们提出了一种新型计算机辅助诊断管道,用于从多重对比 MRI 扫描中进行 IPMN 风险分类。我们提出的分析框架包括一种高效的胰腺体积自适应分割策略,以及一种新设计的基于深度学习的分类方案和一种基于放射组学的预测方法。我们在 246 个多对比度 MRI 扫描的多中心数据集中测试了我们提出的决策融合模型,结果表明其性能优于该领域的最新技术(SOTA)。我们的消融研究表明,与国际指南和已发表的研究相比,放射组学和深度学习模块对于实现新的 SOTA 性能具有重要意义(准确率为 81.9% 对 61.3%)。我们的研究结果对临床决策具有重要意义。在对多中心数据集(来自五个中心的 246 例核磁共振扫描)进行的一系列严格实验中,我们取得了前所未有的性能(准确率为 81.9%)。代码发布后即可获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信