Permutation Modules with Nakayama Endomorphism Rings

Pub Date : 2024-01-25 DOI:10.1007/s00031-024-09842-7
Xiaogang Li, Jiawei He
{"title":"Permutation Modules with Nakayama Endomorphism Rings","authors":"Xiaogang Li, Jiawei He","doi":"10.1007/s00031-024-09842-7","DOIUrl":null,"url":null,"abstract":"<p>Given a field <i>K</i> of characteristic <span>\\(p&gt;0\\)</span> and a natural number <i>n</i>, assuming that <i>G</i> is a permutation group acting on a set <span>\\(\\Omega \\)</span> with <i>n</i> elements, then <span>\\(K\\Omega \\)</span> is a permutation module for <i>G</i> in the natural way. If <i>G</i> is primitive and <span>\\(n\\le 5p\\)</span>, we will show that <span>\\(\\textrm{End}_{KG}(K\\Omega )\\)</span> is always a symmetric Nakayama algebra unless <span>\\(p=5\\)</span> and <span>\\(n=25\\)</span>. As a consequence, <span>\\(\\textrm{End}_{KG}(K\\Omega )\\)</span> is always a symmetric Nakayama algebra if <i>G</i> is quasiprimitive, <span>\\(n&lt;4p\\)</span> and <span>\\(3\\not \\mid p-1\\)</span> when <span>\\(n=3p\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09842-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a field K of characteristic \(p>0\) and a natural number n, assuming that G is a permutation group acting on a set \(\Omega \) with n elements, then \(K\Omega \) is a permutation module for G in the natural way. If G is primitive and \(n\le 5p\), we will show that \(\textrm{End}_{KG}(K\Omega )\) is always a symmetric Nakayama algebra unless \(p=5\) and \(n=25\). As a consequence, \(\textrm{End}_{KG}(K\Omega )\) is always a symmetric Nakayama algebra if G is quasiprimitive, \(n<4p\) and \(3\not \mid p-1\) when \(n=3p\).

分享
查看原文
具有中山内定环的置换模块
给定一个特性为(p>0\)的域K和一个自然数n,假设G是一个作用于具有n个元素的集合(\ω\)上的置换群,那么\(K\ω\)就是G的一个置换模块。如果G是原始的,并且(nle 5p),我们将证明(\textrm{End}_{KG}(K\Omega ))总是一个对称的中山代数,除非(p=5)和(n=25)。因此,如果G是准三元组,那么\(textrm{End}_{KG}(K\Omega )\)总是一个对称的中山代数,当\(n=3p\)时,\(n<4p\)和\(3\not \mid p-1\)总是对称的中山代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信