{"title":"Fluid flow past a freely moving body in a straight or distorted channel","authors":"Samire Yazar, Qingsong Liu, Frank T. Smith","doi":"10.1007/s00162-023-00684-9","DOIUrl":null,"url":null,"abstract":"<p>The focus here is on a thin solid body passing through a channel flow and interacting with the flow. Unsteady two-dimensional interactive properties from modelling, analysis and computation are presented along with comparisons. These include the effects of a finite dilation or constriction, as the body travels through, and the effects of a continuing expansion of the vessel. Finite-time clashing of the body with the channel walls is investigated as well as the means to avoid clashing. Sustained oscillations are found to be possible. Wake properties behind the body are obtained, and broad agreement in trends between full-system and reduced-system responses is found for increased body mass.</p>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"38 1","pages":"89 - 106"},"PeriodicalIF":2.2000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00162-023-00684-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00162-023-00684-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The focus here is on a thin solid body passing through a channel flow and interacting with the flow. Unsteady two-dimensional interactive properties from modelling, analysis and computation are presented along with comparisons. These include the effects of a finite dilation or constriction, as the body travels through, and the effects of a continuing expansion of the vessel. Finite-time clashing of the body with the channel walls is investigated as well as the means to avoid clashing. Sustained oscillations are found to be possible. Wake properties behind the body are obtained, and broad agreement in trends between full-system and reduced-system responses is found for increased body mass.
期刊介绍:
Theoretical and Computational Fluid Dynamics provides a forum for the cross fertilization of ideas, tools and techniques across all disciplines in which fluid flow plays a role. The focus is on aspects of fluid dynamics where theory and computation are used to provide insights and data upon which solid physical understanding is revealed. We seek research papers, invited review articles, brief communications, letters and comments addressing flow phenomena of relevance to aeronautical, geophysical, environmental, material, mechanical and life sciences. Papers of a purely algorithmic, experimental or engineering application nature, and papers without significant new physical insights, are outside the scope of this journal. For computational work, authors are responsible for ensuring that any artifacts of discretization and/or implementation are sufficiently controlled such that the numerical results unambiguously support the conclusions drawn. Where appropriate, and to the extent possible, such papers should either include or reference supporting documentation in the form of verification and validation studies.