On finite domination and Poincaré duality

Pub Date : 2024-01-24 DOI:10.4310/hha.2024.v26.n1.a3
John R. Klein
{"title":"On finite domination and Poincaré duality","authors":"John R. Klein","doi":"10.4310/hha.2024.v26.n1.a3","DOIUrl":null,"url":null,"abstract":"The object of this paper is to show that non-homotopy finite Poincaré duality spaces are plentiful. Let $π$ be a finitely presented group. Assuming that the reduced Grothendieck group $\\widetilde{K}_0 (\\mathbb{Z} [\\pi])$ has a non-trivial $2$-divisible element, we construct a finitely dominated Poincaré space $X$ with fundamental group $π$ such that $X$ is not homotopy finite. The dimension of $X$ can be made arbitrarily large. Our proof relies on a result which says that every finitely dominated space possesses a stable Poincaré duality thickening.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n1.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The object of this paper is to show that non-homotopy finite Poincaré duality spaces are plentiful. Let $π$ be a finitely presented group. Assuming that the reduced Grothendieck group $\widetilde{K}_0 (\mathbb{Z} [\pi])$ has a non-trivial $2$-divisible element, we construct a finitely dominated Poincaré space $X$ with fundamental group $π$ such that $X$ is not homotopy finite. The dimension of $X$ can be made arbitrarily large. Our proof relies on a result which says that every finitely dominated space possesses a stable Poincaré duality thickening.
分享
查看原文
论有限支配和泊恩卡对偶性
本文的目的是证明非同向有限波恩卡列对偶空间是非常多的。假设 $π$ 是一个有限呈现群。假定还原的格罗内狄克群 $\widetilde{K}_0 (\mathbb{Z} [\pi])$ 有一个非三价的 2 美元可分元素,我们将构造一个有限支配的、基群为 $π$ 的波恩卡列空间 $X$,使得 $X$ 不是同调有限的。$X$ 的维数可以任意变大。我们的证明依赖于一个结果,即每个有限支配空间都拥有一个稳定的波恩卡列对偶增厚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信