The BPHZ Theorem for Regularity Structures via the Spectral Gap Inequality

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Martin Hairer, Rhys Steele
{"title":"The BPHZ Theorem for Regularity Structures via the Spectral Gap Inequality","authors":"Martin Hairer,&nbsp;Rhys Steele","doi":"10.1007/s00205-023-01946-w","DOIUrl":null,"url":null,"abstract":"<div><p>We provide a relatively compact proof of the BPHZ theorem for regularity structures of decorated trees in the case where the driving noise satisfies a suitable spectral gap property, as in the Gaussian case. This is inspired by the recent work (Linares et al. in A diagram-free approach to the stochastic estimates in regularity structures, 2021. arXiv:2112.10739) in the multi-index setting, but our proof relies crucially on a novel version of the reconstruction theorem for a space of “pointed Besov modelled distributions”. As a consequence, the analytical core of the proof is quite short and self-contained, which should make it easier to adapt the proof to different contexts (such as the setting of discrete models).</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-023-01946-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-023-01946-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a relatively compact proof of the BPHZ theorem for regularity structures of decorated trees in the case where the driving noise satisfies a suitable spectral gap property, as in the Gaussian case. This is inspired by the recent work (Linares et al. in A diagram-free approach to the stochastic estimates in regularity structures, 2021. arXiv:2112.10739) in the multi-index setting, but our proof relies crucially on a novel version of the reconstruction theorem for a space of “pointed Besov modelled distributions”. As a consequence, the analytical core of the proof is quite short and self-contained, which should make it easier to adapt the proof to different contexts (such as the setting of discrete models).

通过谱差距不等式实现规则性结构的 BPHZ 定理
我们为装饰树正则性结构的 BPHZ 定理提供了一个相对简洁的证明,即在驱动噪声满足合适的谱间隙特性的情况下,就像在高斯情况下一样。我们的证明主要依赖于 "尖贝索夫建模分布 "空间重构定理的新版本。因此,证明的分析核心相当简短且自成一体,这将使证明更容易适应不同的环境(如离散模型环境)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信