{"title":"Polynomial generators of $\\mathbf{MSU}^\\ast [1/2]$ related to classifying maps of certain formal group laws","authors":"Malkhaz Bakuradze","doi":"10.4310/hha.2024.v26.n1.a1","DOIUrl":null,"url":null,"abstract":"This paper presents a commutative complex oriented cohomology theory that realizes the Buchstaber formal group law $F_B$ localized away from $2$. It is shown that the restriction of the classifying map of $F_B$ on the special unitary cobordism ring localized away from $2$ defines a four parameter genus, studied by Hoehn and Totaro.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n1.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a commutative complex oriented cohomology theory that realizes the Buchstaber formal group law $F_B$ localized away from $2$. It is shown that the restriction of the classifying map of $F_B$ on the special unitary cobordism ring localized away from $2$ defines a four parameter genus, studied by Hoehn and Totaro.