Least energy nodal solutions for a weighted \((N, p)\)-Schrödinger problem involving a continuous potential under exponential growth nonlinearity

IF 1.7 4区 数学 Q1 Mathematics
Sami Baraket, Brahim Dridi, Azedine Grine, Rached Jaidane
{"title":"Least energy nodal solutions for a weighted \\((N, p)\\)-Schrödinger problem involving a continuous potential under exponential growth nonlinearity","authors":"Sami Baraket, Brahim Dridi, Azedine Grine, Rached Jaidane","doi":"10.1186/s13661-024-01829-3","DOIUrl":null,"url":null,"abstract":"This article aims to investigate the existence of nontrivial solutions with minimal energy for a logarithmic weighted $(N,p)$ -Laplacian problem in the unit ball B of $\\mathbb{R}^{N}$ , $N>2$ . The nonlinearities of the equation are critical or subcritical growth, which is motivated by weighted Trudinger–Moser type inequalities. Our approach is based on constrained minimization within the Nehari set, the quantitative deformation lemma, and degree theory results.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":"101 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01829-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This article aims to investigate the existence of nontrivial solutions with minimal energy for a logarithmic weighted $(N,p)$ -Laplacian problem in the unit ball B of $\mathbb{R}^{N}$ , $N>2$ . The nonlinearities of the equation are critical or subcritical growth, which is motivated by weighted Trudinger–Moser type inequalities. Our approach is based on constrained minimization within the Nehari set, the quantitative deformation lemma, and degree theory results.
指数增长非线性条件下涉及连续势的加((N, p))权薛定谔问题的最小能量节点解
本文旨在研究在 $\mathbb{R}^{N}$ 的单位球 B 中,$N>2$ 的对数加权 $(N,p)$ 拉普拉斯问题是否存在能量最小的非小解。方程的非线性是临界或亚临界增长,这是由加权特鲁丁格-莫泽型不等式引起的。我们的方法基于内哈里集的约束最小化、定量变形 Lemma 和度理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Boundary Value Problems
Boundary Value Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.00
自引率
5.90%
发文量
83
审稿时长
4 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信