{"title":"Vortex filament flows for curves in a 3-dimensional pseudo-Riemannian manifold","authors":"Zühal Küçükarslan Yüzbai, Nevin Ertug Gürbüz, Hyun Chul Lee, Dae Won Yoon","doi":"10.1007/s00010-023-01030-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we focus on the evolution of the vortex filament flow <span>\\(\\frac{\\partial \\gamma }{\\partial t} = \\frac{\\partial \\gamma }{\\partial s} \\wedge \\frac{D}{ds}\\frac{\\partial \\gamma }{\\partial s}\\)</span> for spacelike and timelike curves in a 3-dimensional pseudo-Riemannian manifold. We study the relations between a partial differential equation and the vortex filament flow for spacelike and timelike curves. As a result, we prove that the vortex filament flow of the spacelike curve in a 3-dimensional pseudo-Riemannian manifold with constant sectional curvature is equivalent to the heat equation, and the flow of the timelike curve is equivalent to the non-linear Schrödinger equation. Also, we give some examples to illustrate the vortex filament flow.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"98 1","pages":"261 - 274"},"PeriodicalIF":0.9000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-023-01030-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we focus on the evolution of the vortex filament flow \(\frac{\partial \gamma }{\partial t} = \frac{\partial \gamma }{\partial s} \wedge \frac{D}{ds}\frac{\partial \gamma }{\partial s}\) for spacelike and timelike curves in a 3-dimensional pseudo-Riemannian manifold. We study the relations between a partial differential equation and the vortex filament flow for spacelike and timelike curves. As a result, we prove that the vortex filament flow of the spacelike curve in a 3-dimensional pseudo-Riemannian manifold with constant sectional curvature is equivalent to the heat equation, and the flow of the timelike curve is equivalent to the non-linear Schrödinger equation. Also, we give some examples to illustrate the vortex filament flow.
期刊介绍:
aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.