Vortex filament flows for curves in a 3-dimensional pseudo-Riemannian manifold

IF 0.9 3区 数学 Q2 MATHEMATICS
Zühal Küçükarslan Yüzbai, Nevin Ertug Gürbüz, Hyun Chul Lee, Dae Won Yoon
{"title":"Vortex filament flows for curves in a 3-dimensional pseudo-Riemannian manifold","authors":"Zühal Küçükarslan Yüzbai,&nbsp;Nevin Ertug Gürbüz,&nbsp;Hyun Chul Lee,&nbsp;Dae Won Yoon","doi":"10.1007/s00010-023-01030-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we focus on the evolution of the vortex filament flow <span>\\(\\frac{\\partial \\gamma }{\\partial t} = \\frac{\\partial \\gamma }{\\partial s} \\wedge \\frac{D}{ds}\\frac{\\partial \\gamma }{\\partial s}\\)</span> for spacelike and timelike curves in a 3-dimensional pseudo-Riemannian manifold. We study the relations between a partial differential equation and the vortex filament flow for spacelike and timelike curves. As a result, we prove that the vortex filament flow of the spacelike curve in a 3-dimensional pseudo-Riemannian manifold with constant sectional curvature is equivalent to the heat equation, and the flow of the timelike curve is equivalent to the non-linear Schrödinger equation. Also, we give some examples to illustrate the vortex filament flow.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"98 1","pages":"261 - 274"},"PeriodicalIF":0.9000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-023-01030-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we focus on the evolution of the vortex filament flow \(\frac{\partial \gamma }{\partial t} = \frac{\partial \gamma }{\partial s} \wedge \frac{D}{ds}\frac{\partial \gamma }{\partial s}\) for spacelike and timelike curves in a 3-dimensional pseudo-Riemannian manifold. We study the relations between a partial differential equation and the vortex filament flow for spacelike and timelike curves. As a result, we prove that the vortex filament flow of the spacelike curve in a 3-dimensional pseudo-Riemannian manifold with constant sectional curvature is equivalent to the heat equation, and the flow of the timelike curve is equivalent to the non-linear Schrödinger equation. Also, we give some examples to illustrate the vortex filament flow.

三维伪黎曼流形中曲线的涡丝流
在这项工作中,我们重点研究了在三维空间中,时空曲线的涡旋丝流的演化(\frac{partial \gamma }{\partial t} = \frac{partial \gamma }{\partial s} )。\)为三维伪黎曼流形中的空间曲线和时间曲线。我们研究了空间曲线和时间曲线的偏微分方程与涡旋丝流之间的关系。结果,我们证明了在具有恒定截面曲率的三维伪黎曼流形中,类空间曲线的涡丝流等价于热方程,类时间曲线的涡丝流等价于非线性薛定谔方程。此外,我们还举了一些例子来说明涡丝流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信