New Perfect and Distance-Optimal Sum-Rank Codes

Hao Chen
{"title":"New Perfect and Distance-Optimal Sum-Rank Codes","authors":"Hao Chen","doi":"arxiv-2401.11160","DOIUrl":null,"url":null,"abstract":"Constructions of infinite families of distance-optimal codes in the Hamming\nmetric and the sum-rank metric are challenging problems and have attracted many\nattentions. In this paper, we give the following three results. 1) If $\\lambda|q^{sm}-1$ and $\\lambda\n<\\sqrt{\\frac{(q^s-1)}{2(q-1)^2(1+\\epsilon)}}$, an infinite family of\ndistance-optimal $q$-ary cyclic sum-rank codes with the block length\n$t=\\frac{q^{sm}-1}{\\lambda}$, the matrix size $s \\times s$, the cardinality\n$q^{s^2t-s(2m+3)}$ and the minimum sum-rank distance four is constructed. 2) Block length $q^4-1$ and the matrix size $2 \\times 2$ distance-optimal\nsum-rank codes with the minimum sum-rank distance four and the Singleton defect\nfour are constructed. These sum-rank codes are close to the sphere packing\nbound , the Singleton-like bound and have much larger block length\n$q^4-1>>q-1$. 3) For given positive integers $n$ and $m$ satisfying $m<n$, an infinite\nfamily of perfect sum-rank codes with the matrix size $m \\times n$, and the\nminimum sum-rank distance three is also constructed. The construction of perfect sum-rank codes of the matrix size $m \\times n$,\n$1<m<n$, answers the open problem proposed by U. Mart\\'{\\i}nez-Pe\\~{n}as in\n2019 positively.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.11160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Constructions of infinite families of distance-optimal codes in the Hamming metric and the sum-rank metric are challenging problems and have attracted many attentions. In this paper, we give the following three results. 1) If $\lambda|q^{sm}-1$ and $\lambda <\sqrt{\frac{(q^s-1)}{2(q-1)^2(1+\epsilon)}}$, an infinite family of distance-optimal $q$-ary cyclic sum-rank codes with the block length $t=\frac{q^{sm}-1}{\lambda}$, the matrix size $s \times s$, the cardinality $q^{s^2t-s(2m+3)}$ and the minimum sum-rank distance four is constructed. 2) Block length $q^4-1$ and the matrix size $2 \times 2$ distance-optimal sum-rank codes with the minimum sum-rank distance four and the Singleton defect four are constructed. These sum-rank codes are close to the sphere packing bound , the Singleton-like bound and have much larger block length $q^4-1>>q-1$. 3) For given positive integers $n$ and $m$ satisfying $m
新的完美代码和距离最优和值代码
构建汉明度量和和秩度量中的无限距离最优码族是一个具有挑战性的问题,吸引了许多人的关注。本文给出了以下三个结果。1) 若 $\lambda|q^{sm}-1$ 且 $\lambda>q-1$.3) 对于给定的满足 $m
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信