Error-Correcting Codes on Projective Bundles over Deligne-Lusztig varieties

Daniel Camazón Portela, Juan Antonio López Ramos
{"title":"Error-Correcting Codes on Projective Bundles over Deligne-Lusztig varieties","authors":"Daniel Camazón Portela, Juan Antonio López Ramos","doi":"arxiv-2401.11433","DOIUrl":null,"url":null,"abstract":"The aim of this article is to give lower bounds on the parameters of\nalgebraic geometric error-correcting codes constructed from projective bundles\nover Deligne--Lusztig surfaces. The methods based on an intensive use of the\nintersection theory allow us to extend the codes previously constructed from\nhigher-dimensional varieties, as well as those coming from curves. General\nbounds are obtained for the case of projective bundles of rank $2$ over\nstandard Deligne-Lusztig surfaces, and some explicit examples coming from\nsurfaces of type $A_{2}$ and ${}^{2}A_{4}$ are given.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"113 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.11433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this article is to give lower bounds on the parameters of algebraic geometric error-correcting codes constructed from projective bundles over Deligne--Lusztig surfaces. The methods based on an intensive use of the intersection theory allow us to extend the codes previously constructed from higher-dimensional varieties, as well as those coming from curves. General bounds are obtained for the case of projective bundles of rank $2$ over standard Deligne-Lusztig surfaces, and some explicit examples coming from surfaces of type $A_{2}$ and ${}^{2}A_{4}$ are given.
德利涅-卢斯齐格变上的投影束上的纠错码
本文的目的是给出由 Deligne--Lusztig 曲面上的投影束构造的代数几何纠错码的参数下限。基于密集使用交集理论的方法使我们能够扩展以前从高维变体构造的编码,以及从曲线构造的编码。我们得到了秩为 2$ 的投影束在标准德利尼-鲁兹提格曲面上的一般界限,并给出了一些来自 $A_{2}$ 和 ${}^{2}A_{4}$ 类型曲面的明确例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信