Low Complexity Turbo SIC-MMSE Detection for Orthogonal Time Frequency Space Modulation

Qi Li, Jinhong Yuan, Min Qiu, Shuangyang Li, Yixuan Xie
{"title":"Low Complexity Turbo SIC-MMSE Detection for Orthogonal Time Frequency Space Modulation","authors":"Qi Li, Jinhong Yuan, Min Qiu, Shuangyang Li, Yixuan Xie","doi":"arxiv-2401.11058","DOIUrl":null,"url":null,"abstract":"Recently, orthogonal time frequency space (OTFS) modulation has garnered\nconsiderable attention due to its robustness against doubly-selective wireless\nchannels. In this paper, we propose a low-complexity iterative successive\ninterference cancellation based minimum mean squared error (SIC-MMSE) detection\nalgorithm for zero-padded OTFS (ZP-OTFS) modulation. In the proposed algorithm,\nsignals are detected based on layers processed by multiple SIC-MMSE linear\nfilters for each sub-channel, with interference on the targeted signal layer\nbeing successively canceled either by hard or soft information. To reduce the\ncomplexity of computing individual layer filter coefficients, we also propose a\nnovel filter coefficients recycling approach in place of generating the exact\nform of MMSE filter weights. Moreover, we design a joint detection and decoding\nalgorithm for ZP-OTFS to enhance error performance. Compared to the\nconventional SIC-MMSE detection, our proposed algorithms outperform other\nlinear detectors, e.g., maximal ratio combining (MRC), for ZP-OTFS with up to 3\ndB gain while maintaining comparable computation complexity.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.11058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, orthogonal time frequency space (OTFS) modulation has garnered considerable attention due to its robustness against doubly-selective wireless channels. In this paper, we propose a low-complexity iterative successive interference cancellation based minimum mean squared error (SIC-MMSE) detection algorithm for zero-padded OTFS (ZP-OTFS) modulation. In the proposed algorithm, signals are detected based on layers processed by multiple SIC-MMSE linear filters for each sub-channel, with interference on the targeted signal layer being successively canceled either by hard or soft information. To reduce the complexity of computing individual layer filter coefficients, we also propose a novel filter coefficients recycling approach in place of generating the exact form of MMSE filter weights. Moreover, we design a joint detection and decoding algorithm for ZP-OTFS to enhance error performance. Compared to the conventional SIC-MMSE detection, our proposed algorithms outperform other linear detectors, e.g., maximal ratio combining (MRC), for ZP-OTFS with up to 3 dB gain while maintaining comparable computation complexity.
用于正交时频空间调制的低复杂度 Turbo SIC-MMSE 检测
近来,正交时频空间(OTFS)调制因其对双选择无线信道的鲁棒性而受到广泛关注。在本文中,我们针对零填充 OTFS(ZP-OTFS)调制提出了一种低复杂度的基于最小均方误差(SIC-MMSE)的迭代连续干扰消除检测算法。在所提出的算法中,信号检测基于每个子信道的多个 SIC-MMSE 线性滤波器处理的层,目标信号层上的干扰通过硬信息或软信息被连续消除。为了降低计算单个层滤波器系数的复杂性,我们还提出了一种层滤波器系数循环方法,以代替生成 MMSE 滤波器权重的精确形式。此外,我们还为 ZP-OTFS 设计了联合检测和解码算法,以提高误差性能。与传统的 SIC-MMSE 检测相比,我们提出的算法在 ZP-OTFS 方面的性能优于其他线性检测器(如最大比组合(MRC)),增益高达 3dB,同时保持了相当的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信