Eva Balaguer Moya, Berta Syhler, Giuliano Dragone, Solange I. Mussatto
{"title":"Tailoring a cellulolytic enzyme cocktail for efficient hydrolysis of mildly pretreated lignocellulosic biomass","authors":"Eva Balaguer Moya, Berta Syhler, Giuliano Dragone, Solange I. Mussatto","doi":"10.1016/j.enzmictec.2024.110403","DOIUrl":null,"url":null,"abstract":"<div><p>Commercially available cellulase cocktails frequently demonstrate high efficiency in hydrolyzing easily digestible pretreated biomass, which often lacks hemicellulose and/or lignin fractions. However, the challenge arises with enzymatic hydrolysis of mildly pretreated lignocellulosic biomasses, which contain cellulose, hemicellulose and lignin in high proportions. This study aimed to address this question by evaluating the supplementation of a commercial cellulolytic cocktail with accessory hemicellulases and two additives (H<sub>2</sub>O<sub>2</sub> and Tween® 80). Statistical optimization methods were employed to enhance the release of glucose and xylose from mildly pretreated sugarcane bagasse. The optimized supplement composition resulted in the production of 304 and 124 mg g<sup>−1</sup> DM of glucose and xylose, respectively, significantly increasing glucose release by 84% and xylose release by 94% compared to using only the cellulolytic cocktail. This enhancement might be attributed to a coordinated hemicellulases action degrading hemicellulose, creating more space for cellulase activity, potentially boosted by the presence of H<sub>2</sub>O<sub>2</sub> and Tween® 80. However, the addition of different concentrations of H<sub>2</sub>O<sub>2</sub> in combination with hemicellulase and Tween® 80 did not result a significant difference on sugar release, which could be attributed to the limited range of concentrations studied (5 to 65 µM). The results obtained in this study using the mix of three supplements were also compared to the addition of only hemicellulase and only Tween® 80 to the cellulolytic cocktail. A significant increase in glucose release of 39% and 41%, respectively, was observed when using the optimized combination. For xylose, the increase was 38% and 41%, respectively. This study underscores the substantial potential in optimizing enzyme cocktails for the hydrolysis of mildly pretreated lignocellulosic biomass by using enzymes and additive combinations tailored to the specific biomass composition.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"175 ","pages":"Article 110403"},"PeriodicalIF":3.4000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0141022924000103/pdfft?md5=bec6a9262744f705eab97b18e24b8f80&pid=1-s2.0-S0141022924000103-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022924000103","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Commercially available cellulase cocktails frequently demonstrate high efficiency in hydrolyzing easily digestible pretreated biomass, which often lacks hemicellulose and/or lignin fractions. However, the challenge arises with enzymatic hydrolysis of mildly pretreated lignocellulosic biomasses, which contain cellulose, hemicellulose and lignin in high proportions. This study aimed to address this question by evaluating the supplementation of a commercial cellulolytic cocktail with accessory hemicellulases and two additives (H2O2 and Tween® 80). Statistical optimization methods were employed to enhance the release of glucose and xylose from mildly pretreated sugarcane bagasse. The optimized supplement composition resulted in the production of 304 and 124 mg g−1 DM of glucose and xylose, respectively, significantly increasing glucose release by 84% and xylose release by 94% compared to using only the cellulolytic cocktail. This enhancement might be attributed to a coordinated hemicellulases action degrading hemicellulose, creating more space for cellulase activity, potentially boosted by the presence of H2O2 and Tween® 80. However, the addition of different concentrations of H2O2 in combination with hemicellulase and Tween® 80 did not result a significant difference on sugar release, which could be attributed to the limited range of concentrations studied (5 to 65 µM). The results obtained in this study using the mix of three supplements were also compared to the addition of only hemicellulase and only Tween® 80 to the cellulolytic cocktail. A significant increase in glucose release of 39% and 41%, respectively, was observed when using the optimized combination. For xylose, the increase was 38% and 41%, respectively. This study underscores the substantial potential in optimizing enzyme cocktails for the hydrolysis of mildly pretreated lignocellulosic biomass by using enzymes and additive combinations tailored to the specific biomass composition.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.