Stochastic Homogenization of Micromagnetic Energies and Emergence of Magnetic Skyrmions

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
{"title":"Stochastic Homogenization of Micromagnetic Energies and Emergence of Magnetic Skyrmions","authors":"","doi":"10.1007/s00332-023-10005-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We perform a stochastic homogenization analysis for composite materials exhibiting a random microstructure. Under the assumptions of stationarity and ergodicity, we characterize the Gamma-limit of a micromagnetic energy functional defined on magnetizations taking value in the unit sphere and including both symmetric and antisymmetric exchange contributions. This Gamma-limit corresponds to a micromagnetic energy functional with homogeneous coefficients. We provide explicit formulas for the effective magnetic properties of the composite material in terms of homogenization correctors. Additionally, the variational analysis of the two exchange energy terms is performed in the more general setting of functionals defined on manifold-valued maps with Sobolev regularity, in the case in which the target manifold is a bounded, orientable smooth surface with tubular neighborhood of uniform thickness. Eventually, we present an explicit characterization of minimizers of the effective exchange in the case of magnetic multilayers, providing quantitative evidence of Dzyaloshinskii’s predictions on the emergence of helical structures in composite ferromagnetic materials with stochastic microstructure.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-023-10005-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We perform a stochastic homogenization analysis for composite materials exhibiting a random microstructure. Under the assumptions of stationarity and ergodicity, we characterize the Gamma-limit of a micromagnetic energy functional defined on magnetizations taking value in the unit sphere and including both symmetric and antisymmetric exchange contributions. This Gamma-limit corresponds to a micromagnetic energy functional with homogeneous coefficients. We provide explicit formulas for the effective magnetic properties of the composite material in terms of homogenization correctors. Additionally, the variational analysis of the two exchange energy terms is performed in the more general setting of functionals defined on manifold-valued maps with Sobolev regularity, in the case in which the target manifold is a bounded, orientable smooth surface with tubular neighborhood of uniform thickness. Eventually, we present an explicit characterization of minimizers of the effective exchange in the case of magnetic multilayers, providing quantitative evidence of Dzyaloshinskii’s predictions on the emergence of helical structures in composite ferromagnetic materials with stochastic microstructure.

微磁能量的随机同质化与磁天幕的出现
摘要 我们对表现出随机微观结构的复合材料进行了随机均质化分析。在静止性和遍历性假设下,我们描述了定义在单位球内取值的磁化上的微磁能量函数的伽马极限,其中包括对称和非对称交换贡献。该伽马极限对应于具有同质系数的微磁能量函数。我们用均质化校正器为复合材料的有效磁特性提供了明确的公式。此外,在目标流形是有界、可定向的光滑表面,且具有厚度均匀的管状邻域的情况下,我们在具有索博廖夫正则性的流形值映射上定义的函数的更一般设置中,对两个交换能项进行了变分分析。最后,我们提出了磁性多层膜情况下有效交换最小化的明确特征,为 Dzyaloshinskii 关于具有随机微观结构的复合铁磁材料中出现螺旋结构的预测提供了定量证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信