Control of robot manipulators with uncertain closed architecture using neural networks

IF 2.3 4区 计算机科学 Q3 ROBOTICS
Gulam Dastagir Khan
{"title":"Control of robot manipulators with uncertain closed architecture using neural networks","authors":"Gulam Dastagir Khan","doi":"10.1007/s11370-023-00507-0","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a novel neural network-based control approach designed for industrial robot manipulators characterized by uncertain closed architectures and unknown dynamics. Industrial and commercial robot manipulators typically employ closed control architectures, which limit the ability to make modifications or comprehend the inner control processes. Users are generally restricted to providing joint position or velocity commands for controlling the manipulator. Furthermore, the integration of these robots with external sensors for modern applications poses challenges to system stability. Our proposed solution utilizes neural networks to approximate the robot’s dynamic model and low-level controller. The proposed controller is introduced as an outer (external feedback) loop, ensuring independence from the inner controller configuration. This outer loop leverages external sensor data and the desired trajectory to calculate commands for joint velocities. Consequently, this approach offers greater design flexibility for modern control applications. Unlike previous studies, our work introduces novelty through unconstrained control actions, avoiding the need for inner controller configuration and control gain structure. To validate our method, we conducted experiments using two industrial manipulators, namely the UR5e and UR10e, and the results clearly demonstrate the superior performance and industrial applicability of the framework we have developed.</p>","PeriodicalId":48813,"journal":{"name":"Intelligent Service Robotics","volume":"7 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Service Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11370-023-00507-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel neural network-based control approach designed for industrial robot manipulators characterized by uncertain closed architectures and unknown dynamics. Industrial and commercial robot manipulators typically employ closed control architectures, which limit the ability to make modifications or comprehend the inner control processes. Users are generally restricted to providing joint position or velocity commands for controlling the manipulator. Furthermore, the integration of these robots with external sensors for modern applications poses challenges to system stability. Our proposed solution utilizes neural networks to approximate the robot’s dynamic model and low-level controller. The proposed controller is introduced as an outer (external feedback) loop, ensuring independence from the inner controller configuration. This outer loop leverages external sensor data and the desired trajectory to calculate commands for joint velocities. Consequently, this approach offers greater design flexibility for modern control applications. Unlike previous studies, our work introduces novelty through unconstrained control actions, avoiding the need for inner controller configuration and control gain structure. To validate our method, we conducted experiments using two industrial manipulators, namely the UR5e and UR10e, and the results clearly demonstrate the superior performance and industrial applicability of the framework we have developed.

Abstract Image

利用神经网络控制具有不确定封闭结构的机器人机械手
本文介绍了一种基于神经网络的新型控制方法,该方法专为具有不确定封闭架构和未知动态特性的工业机器人机械手而设计。工业和商用机器人机械手通常采用封闭式控制架构,这限制了进行修改或理解内部控制过程的能力。用户通常只能提供关节位置或速度指令来控制机械手。此外,在现代应用中,这些机器人与外部传感器的集成给系统稳定性带来了挑战。我们提出的解决方案利用神经网络逼近机器人的动态模型和底层控制器。所提议的控制器作为一个外环(外部反馈)引入,确保独立于内部控制器配置。该外环利用外部传感器数据和所需轨迹来计算关节速度指令。因此,这种方法为现代控制应用提供了更大的设计灵活性。与以往的研究不同,我们的工作通过无约束控制动作引入了新颖性,避免了对内部控制器配置和控制增益结构的需求。为了验证我们的方法,我们使用两个工业机械手(即 UR5e 和 UR10e)进行了实验,结果清楚地证明了我们开发的框架具有卓越的性能和工业适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
4.00%
发文量
46
期刊介绍: The journal directs special attention to the emerging significance of integrating robotics with information technology and cognitive science (such as ubiquitous and adaptive computing,information integration in a distributed environment, and cognitive modelling for human-robot interaction), which spurs innovation toward a new multi-dimensional robotic service to humans. The journal intends to capture and archive this emerging yet significant advancement in the field of intelligent service robotics. The journal will publish original papers of innovative ideas and concepts, new discoveries and improvements, as well as novel applications and business models which are related to the field of intelligent service robotics described above and are proven to be of high quality. The areas that the Journal will cover include, but are not limited to: Intelligent robots serving humans in daily life or in a hazardous environment, such as home or personal service robots, entertainment robots, education robots, medical robots, healthcare and rehabilitation robots, and rescue robots (Service Robotics); Intelligent robotic functions in the form of embedded systems for applications to, for example, intelligent space, intelligent vehicles and transportation systems, intelligent manufacturing systems, and intelligent medical facilities (Embedded Robotics); The integration of robotics with network technologies, generating such services and solutions as distributed robots, distance robotic education-aides, and virtual laboratories or museums (Networked Robotics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信