Jacob W Bentley, David Chagaris, Marta Coll, Johanna J Heymans, Natalia Serpetti, Carl J Walters, Villy Christensen
{"title":"Calibrating ecosystem models to support ecosystem-based management of marine systems","authors":"Jacob W Bentley, David Chagaris, Marta Coll, Johanna J Heymans, Natalia Serpetti, Carl J Walters, Villy Christensen","doi":"10.1093/icesjms/fsad213","DOIUrl":null,"url":null,"abstract":"Ecosystem models, such as Ecopath with Ecosim (EwE), provide a platform to simulate intricate policy scenarios where multiple species, pressures, and ecosystem services interact. Complex questions often return complex answers, necessitating evidence and advice to be communicated in terms of trade-offs, risks, and uncertainty. Calibration procedures for EwE, which can act as a source of uncertainty and bias in model results, have yet to be explored in a comprehensive way that communicates how sensitive model outputs are to different calibration approaches. As the EwE community has grown, multiple divergent approaches have been applied to calibrate models through the estimation of vulnerability multipliers: parameters that augment the consumption rate limits of predators. Here we explore the underlying principles of vulnerability multipliers as well as existing calibration approaches and their justification. Two case studies are presented: the first explores how vulnerability multipliers emerge based on the chosen calibration approach using simulated data, while the second takes two operational EwE models (Irish Sea and Northwest Atlantic Continental Shelf) and compares their outputs when calibrated following alternate calibration approaches. We show how calibration approaches can impact model-derived advice and provide a list of best practice recommendations for EwE calibration.","PeriodicalId":51072,"journal":{"name":"ICES Journal of Marine Science","volume":"13 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICES Journal of Marine Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/icesjms/fsad213","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Ecosystem models, such as Ecopath with Ecosim (EwE), provide a platform to simulate intricate policy scenarios where multiple species, pressures, and ecosystem services interact. Complex questions often return complex answers, necessitating evidence and advice to be communicated in terms of trade-offs, risks, and uncertainty. Calibration procedures for EwE, which can act as a source of uncertainty and bias in model results, have yet to be explored in a comprehensive way that communicates how sensitive model outputs are to different calibration approaches. As the EwE community has grown, multiple divergent approaches have been applied to calibrate models through the estimation of vulnerability multipliers: parameters that augment the consumption rate limits of predators. Here we explore the underlying principles of vulnerability multipliers as well as existing calibration approaches and their justification. Two case studies are presented: the first explores how vulnerability multipliers emerge based on the chosen calibration approach using simulated data, while the second takes two operational EwE models (Irish Sea and Northwest Atlantic Continental Shelf) and compares their outputs when calibrated following alternate calibration approaches. We show how calibration approaches can impact model-derived advice and provide a list of best practice recommendations for EwE calibration.
期刊介绍:
The ICES Journal of Marine Science publishes original articles, opinion essays (“Food for Thought”), visions for the future (“Quo Vadimus”), and critical reviews that contribute to our scientific understanding of marine systems and the impact of human activities on them. The Journal also serves as a foundation for scientific advice across the broad spectrum of management and conservation issues related to the marine environment. Oceanography (e.g. productivity-determining processes), marine habitats, living resources, and related topics constitute the key elements of papers considered for publication. This includes economic, social, and public administration studies to the extent that they are directly related to management of the seas and are of general interest to marine scientists. Integrated studies that bridge gaps between traditional disciplines are particularly welcome.