On some special subspaces of a Banach space, from the perspective of best coapproximation

{"title":"On some special subspaces of a Banach space, from the perspective of best coapproximation","authors":"","doi":"10.1007/s00605-023-01930-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We study the best coapproximation problem in Banach spaces, by using Birkhoff–James orthogonality techniques. We introduce two special types of subspaces, christened the anti-coproximinal subspaces and the strongly anti-coproximinal subspaces. We obtain a necessary condition for the strongly anti-coproximinal subspaces in a reflexive Banach space whose dual space satisfies the Kadets–Klee Property. On the other hand, we provide a sufficient condition for the strongly anti-coproximinal subspaces in a general Banach space. We also characterize the anti-coproximinal subspaces of a smooth Banach space. Further, we study these special subspaces in a finite-dimensional polyhedral Banach space and find some interesting geometric structures associated with them.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-023-01930-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the best coapproximation problem in Banach spaces, by using Birkhoff–James orthogonality techniques. We introduce two special types of subspaces, christened the anti-coproximinal subspaces and the strongly anti-coproximinal subspaces. We obtain a necessary condition for the strongly anti-coproximinal subspaces in a reflexive Banach space whose dual space satisfies the Kadets–Klee Property. On the other hand, we provide a sufficient condition for the strongly anti-coproximinal subspaces in a general Banach space. We also characterize the anti-coproximinal subspaces of a smooth Banach space. Further, we study these special subspaces in a finite-dimensional polyhedral Banach space and find some interesting geometric structures associated with them.

从最佳协同逼近的角度看巴拿赫空间的某些特殊子空间
摘要 我们利用伯克霍夫-詹姆斯正交技术研究巴拿赫空间中的最佳逼近问题。我们引入了两种特殊类型的子空间,分别称为反逼近子空间和强反逼近子空间。我们得到了反向巴拿赫空间中强反oproximinal子空间的必要条件,其对偶空间满足卡德茨-克利性质(Kadets-Klee Property)。另一方面,我们为一般巴拿赫空间中的强反oproximinal子空间提供了一个充分条件。我们还描述了光滑巴拿赫空间的反oproximinal子空间的特征。此外,我们还研究了有限维多面体巴拿赫空间中的这些特殊子空间,并发现了与之相关的一些有趣的几何结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信