{"title":"Combustion Performance of a Bi2O3/Al/1Me-3N Mixture Depending on Its Prescription Configuration","authors":"V. V. Gordeev, M. V. Kazutin, N. V. Kozyrev","doi":"10.1134/s001050822306014x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This paper describes a study of combustion performance of a Bi<sub>2</sub>O<sub>3</sub>/Al nanothermite mixture with the addition of 1-methyl-3-nitro-1,2,4-triazole (1Me-3N) depending on the content of the latter and the component ratio of a base Bi<sub>2</sub>O<sub>3</sub>/Al nanothermite pair. Adding 1Me-3N to the mixture increases the explosive force, but the latter begins to decrease as soon as the additive content reaches over a certain limit. Depending on the prescription configuration, it is possible to increase the explosive force by 22–29% relative to Bi<sub>2</sub>O<sub>3</sub>/Al nanothermite. Changing the prescription configuration makes it possible to vary the burning rate of Bi<sub>2</sub>O<sub>3</sub>/Al/1Me-3N within a range of 400–690 m/s in charges 2 mm in diameter and within a range of 120–430 m/s in a 0.1-mm thick layer.</p>","PeriodicalId":10509,"journal":{"name":"Combustion, Explosion, and Shock Waves","volume":"115 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion, Explosion, and Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s001050822306014x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper describes a study of combustion performance of a Bi2O3/Al nanothermite mixture with the addition of 1-methyl-3-nitro-1,2,4-triazole (1Me-3N) depending on the content of the latter and the component ratio of a base Bi2O3/Al nanothermite pair. Adding 1Me-3N to the mixture increases the explosive force, but the latter begins to decrease as soon as the additive content reaches over a certain limit. Depending on the prescription configuration, it is possible to increase the explosive force by 22–29% relative to Bi2O3/Al nanothermite. Changing the prescription configuration makes it possible to vary the burning rate of Bi2O3/Al/1Me-3N within a range of 400–690 m/s in charges 2 mm in diameter and within a range of 120–430 m/s in a 0.1-mm thick layer.
期刊介绍:
Combustion, Explosion, and Shock Waves a peer reviewed journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The journal presents top-level studies in the physics and chemistry of combustion and detonation processes, structural and chemical transformation of matter in shock and detonation waves, and related phenomena. Each issue contains valuable information on initiation of detonation in condensed and gaseous phases, environmental consequences of combustion and explosion, engine and power unit combustion, production of new materials by shock and detonation waves, explosion welding, explosive compaction of powders, dynamic responses of materials and constructions, and hypervelocity impact.