On the sine polynomials of Fejér and Lukács

IF 0.5 4区 数学 Q3 MATHEMATICS
Horst Alzer, Man Kam Kwong
{"title":"On the sine polynomials of Fejér and Lukács","authors":"Horst Alzer,&nbsp;Man Kam Kwong","doi":"10.1007/s00013-023-01950-2","DOIUrl":null,"url":null,"abstract":"<div><p>The sine polynomials of Fejér and Lukács are defined by </p><div><div><span>$$\\begin{aligned} F_n(x)=\\sum _{k=1}^n\\frac{\\sin (kx)}{k} \\quad \\text{ and } \\quad L_n(x)=\\sum _{k=1}^n (n-k+1)\\sin (kx), \\end{aligned}$$</span></div></div><p>respectively. We prove that for all <span>\\(n\\ge 2\\)</span> and <span>\\(x\\in (0,\\pi )\\)</span>, we have </p><div><div><span>$$\\begin{aligned} F_n(x)\\le \\lambda \\, L_n(x) \\quad \\text{ and } \\quad \\mu \\le \\frac{1}{F_n(x)}-\\frac{1}{L_n(x)} \\end{aligned}$$</span></div></div><p>with the best possible constants </p><div><div><span>$$\\begin{aligned} \\lambda = \\frac{8-3\\sqrt{2}}{12(2-\\sqrt{2})} \\quad \\text{ and } \\quad \\mu =\\frac{2}{9}\\sqrt{3}. \\end{aligned}$$</span></div></div><p>An application of the first inequality leads to a class of absolutely monotonic functions involving the arctan function.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"122 3","pages":"307 - 317"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-023-01950-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The sine polynomials of Fejér and Lukács are defined by

$$\begin{aligned} F_n(x)=\sum _{k=1}^n\frac{\sin (kx)}{k} \quad \text{ and } \quad L_n(x)=\sum _{k=1}^n (n-k+1)\sin (kx), \end{aligned}$$

respectively. We prove that for all \(n\ge 2\) and \(x\in (0,\pi )\), we have

$$\begin{aligned} F_n(x)\le \lambda \, L_n(x) \quad \text{ and } \quad \mu \le \frac{1}{F_n(x)}-\frac{1}{L_n(x)} \end{aligned}$$

with the best possible constants

$$\begin{aligned} \lambda = \frac{8-3\sqrt{2}}{12(2-\sqrt{2})} \quad \text{ and } \quad \mu =\frac{2}{9}\sqrt{3}. \end{aligned}$$

An application of the first inequality leads to a class of absolutely monotonic functions involving the arctan function.

论费耶尔和卢卡奇的正弦多项式
费耶尔和卢卡奇的正弦多项式定义如下: $$begin{aligned}F_n(x)=sum _{k=1}^n\frac\sin (kx)}{k}\quad \text{ and }\L_n(x)=sum _{k=1}^n (n-k+1)\sin (kx),end{aligned}$$。我们证明,对于所有的(nge 2)和(xin (0,\pi)),我们有$$\begin{aligned}。F_n(x)/le /lambda /, L_n(x) /quad /text{ and }\quad \mu \le \frac{1}{F_n(x)}-\frac{1}{L_n(x)} \end{aligned}$$ 有最好的常数 $$\begin{aligned}\λ = (frac{8-3/sqrt{2}}{12(2-/sqrt{2})}\quad \text{ and }\quad \mu =\frac{2}{9}\sqrt{3}.\end{aligned}$$应用第一个不等式可以得到一类涉及 arctan 函数的绝对单调函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信