Sherif Farouk, Souvik Sen, Fayez Ahmad, Khaled Al-Kahtany, Salim Benmamar, Ahmed Abdeldaim
{"title":"Assessment of pore pressure in the Oligocene–Pleistocene stratigraphy of the West Delta Deep Marine, offshore Nile Delta, Egypt","authors":"Sherif Farouk, Souvik Sen, Fayez Ahmad, Khaled Al-Kahtany, Salim Benmamar, Ahmed Abdeldaim","doi":"10.1007/s11001-023-09536-x","DOIUrl":null,"url":null,"abstract":"<p>One of the main drilling challenges in the offshore deep-water Nile Delta is the overpressured Tertiary shales, which causes formation fluid influxes, kicks, and very narrow drilling window, thus contributes to non-productive times and enhanced drilling risk. Accurate understanding of pore pressure distribution is crucial for casing design, mud optimization and safe and successful drilling. This study presents first ever in-depth analysis of the pore pressure distribution within the 4500 m thick Oligocene-Pleistocene stratigraphy from the West Delta Deep Marine block in deep-water Nile Delta. Direct formation pressure measurements indicated around 0.06–0.1 PSI/ft (1.36–2.26 MPa/km) gas gradient in the Pliocene El Wastani and Kafr El Sheikh sandstone reservoirs, while the Miocene Qantara sandstones are water-bearing with a 0.42 PSI/ft (9.5 MPa/km) pressure gradient. Shale porosity distribution exhibited additional porosity retention within the montmorillonite and mixed clay-dominated Late Pliocene and deeper sediments and marks the onset of overpressure at the top Kafr El Sheikh Formation. Based on the loading trends and acoustic slowness-density relationship, we inferred compaction disequilibrium as the primary overpressure generating mechanism resulted from high sedimentation rate. Shale pore pressure was interpreted by utilizing wireline logs by utilizing compaction trendline-based approach and calibrated with drilling events and mudlog data. Qantara and Tineh formations are characterized by 0.75–0.77 PSI/ft (16.96–17.41 MPa/km) pore pressure gradient leaving a narrow drilling mud window of 1.7–2 PPG. Based on vertical effective stresses, two significant overpressure compartments were identified in the Late Pliocene and Early Miocene-Late Oligocene, which were separated by the Middle Miocene Sidi Salem Formation acting as a pressure seal.</p>","PeriodicalId":49882,"journal":{"name":"Marine Geophysical Research","volume":"4 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geophysical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11001-023-09536-x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
One of the main drilling challenges in the offshore deep-water Nile Delta is the overpressured Tertiary shales, which causes formation fluid influxes, kicks, and very narrow drilling window, thus contributes to non-productive times and enhanced drilling risk. Accurate understanding of pore pressure distribution is crucial for casing design, mud optimization and safe and successful drilling. This study presents first ever in-depth analysis of the pore pressure distribution within the 4500 m thick Oligocene-Pleistocene stratigraphy from the West Delta Deep Marine block in deep-water Nile Delta. Direct formation pressure measurements indicated around 0.06–0.1 PSI/ft (1.36–2.26 MPa/km) gas gradient in the Pliocene El Wastani and Kafr El Sheikh sandstone reservoirs, while the Miocene Qantara sandstones are water-bearing with a 0.42 PSI/ft (9.5 MPa/km) pressure gradient. Shale porosity distribution exhibited additional porosity retention within the montmorillonite and mixed clay-dominated Late Pliocene and deeper sediments and marks the onset of overpressure at the top Kafr El Sheikh Formation. Based on the loading trends and acoustic slowness-density relationship, we inferred compaction disequilibrium as the primary overpressure generating mechanism resulted from high sedimentation rate. Shale pore pressure was interpreted by utilizing wireline logs by utilizing compaction trendline-based approach and calibrated with drilling events and mudlog data. Qantara and Tineh formations are characterized by 0.75–0.77 PSI/ft (16.96–17.41 MPa/km) pore pressure gradient leaving a narrow drilling mud window of 1.7–2 PPG. Based on vertical effective stresses, two significant overpressure compartments were identified in the Late Pliocene and Early Miocene-Late Oligocene, which were separated by the Middle Miocene Sidi Salem Formation acting as a pressure seal.
期刊介绍:
Well-established international journal presenting marine geophysical experiments on the geology of continental margins, deep ocean basins and the global mid-ocean ridge system. The journal publishes the state-of-the-art in marine geophysical research including innovative geophysical data analysis, new deep sea floor imaging techniques and tools for measuring rock and sediment properties.
Marine Geophysical Research reaches a large and growing community of readers worldwide. Rooted on early international interests in researching the global mid-ocean ridge system, its focus has expanded to include studies of continental margin tectonics, sediment deposition processes and resulting geohazards as well as their structure and stratigraphic record. The editors of MGR predict a rising rate of advances and development in this sphere in coming years, reflecting the diversity and complexity of marine geological processes.