Identifying Nonlinear Dynamics with High Confidence from Sparse Data

IF 1.7 4区 数学 Q2 MATHEMATICS, APPLIED
Bogdan Batko, Marcio Gameiro, Ying Hung, William Kalies, Konstantin Mischaikow, Ewerton Vieira
{"title":"Identifying Nonlinear Dynamics with High Confidence from Sparse Data","authors":"Bogdan Batko, Marcio Gameiro, Ying Hung, William Kalies, Konstantin Mischaikow, Ewerton Vieira","doi":"10.1137/23m1560252","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 383-409, March 2024. <br/> Abstract.We introduce a novel procedure that, given sparse data generated from a stationary deterministic nonlinear dynamical system, can characterize specific local and/or global dynamic behavior with rigorous probability guarantees. More precisely, the sparse data is used to construct a statistical surrogate model based on a Gaussian process (GP). The dynamics of the surrogate model is interrogated using combinatorial methods and characterized using algebraic topological invariants (Conley index). The GP predictive distribution provides a lower bound on the confidence that these topological invariants, and hence the characterized dynamics, apply to the unknown dynamical system (assumed to be a sample path of the GP). The focus of this paper is on explaining the ideas, thus we restrict our examples to one-dimensional systems and show how to capture the existence of fixed points, periodic orbits, connecting orbits, bistability, and chaotic dynamics.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"2 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1560252","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 383-409, March 2024.
Abstract.We introduce a novel procedure that, given sparse data generated from a stationary deterministic nonlinear dynamical system, can characterize specific local and/or global dynamic behavior with rigorous probability guarantees. More precisely, the sparse data is used to construct a statistical surrogate model based on a Gaussian process (GP). The dynamics of the surrogate model is interrogated using combinatorial methods and characterized using algebraic topological invariants (Conley index). The GP predictive distribution provides a lower bound on the confidence that these topological invariants, and hence the characterized dynamics, apply to the unknown dynamical system (assumed to be a sample path of the GP). The focus of this paper is on explaining the ideas, thus we restrict our examples to one-dimensional systems and show how to capture the existence of fixed points, periodic orbits, connecting orbits, bistability, and chaotic dynamics.
从稀疏数据中识别高可信度非线性动力学
SIAM 应用动力系统期刊》第 23 卷第 1 期第 383-409 页,2024 年 3 月。 摘要.我们介绍了一种新的程序,给定由静态确定性非线性动力学系统生成的稀疏数据,该程序能以严格的概率保证表征特定的局部和/或全局动力学行为。更准确地说,稀疏数据用于构建基于高斯过程(GP)的统计代用模型。使用组合方法对代理模型的动态进行分析,并使用代数拓扑不变式(康利指数)对其进行表征。GP 预测分布提供了这些拓扑不变式的置信度下限,因此表征的动力学适用于未知动力系统(假设为 GP 的样本路径)。本文的重点在于解释这些思想,因此我们将例子限制在一维系统,并展示如何捕捉定点、周期轨道、连接轨道、双稳态和混沌动力学的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems 物理-物理:数学物理
CiteScore
3.60
自引率
4.80%
发文量
74
审稿时长
6 months
期刊介绍: SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信