{"title":"Fuzzified Deep Learning based Forgery Detection of Signatures in the Healthcare Mission Records","authors":"Ishu Priya, Nisha Chaurasia, Ashutosh Kumar Singh, Nakul Mehta, Abhishek Singh Kilak, Ahmed Alkhayyat","doi":"10.1145/3641818","DOIUrl":null,"url":null,"abstract":"<p>In an era subjected to digital solutions, handwritten signatures continue playing a crucial role in identity verification and document authentication. These signatures, a form of bio-metric verification, are unique to every individual, serving as a primitive method for confirming identity and ensuring security of an individual. Signatures, apart from being a means of personal authentication, are often considered a cornerstone in the validation of critical documents and processes, especially within the healthcare sector. In healthcare missions, particularly in the regions that are underdeveloped, hand-written records persist as the primary mode of documentation. The credibility of these handwritten documents hinges on the authenticity of the accompanying signatures, making signature verification a paramount safeguard for the integrity and security of medical information. Nonetheless, traditional offline methods of signature identification can be time-consuming and inefficient, particularly while dealing with a massive volume of documents. This arises the evident need for automated signature verification systems. Our research introduces an innovative signature verification system which synthesizes the strengths of fuzzy logic and CNN (Convolutional Neural Networks) to deliver precise and efficient signature verification. Leveraging the capabilities of Fuzzy Logic for feature representation and CNNs for discriminative learning, our proposed hybrid model offers a compelling solution. Through rigorous training, spanning a mere 28 epochs, our hybrid model exhibits remarkable performance by attaining a training accuracy of 91.29% and a test accuracy of 88.47%, underscoring its robust generalization capacity. In an era of evolving security requirements and the persistent relevance of handwritten signatures, our research links the disparity between tradition and modernity.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":"39 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3641818","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In an era subjected to digital solutions, handwritten signatures continue playing a crucial role in identity verification and document authentication. These signatures, a form of bio-metric verification, are unique to every individual, serving as a primitive method for confirming identity and ensuring security of an individual. Signatures, apart from being a means of personal authentication, are often considered a cornerstone in the validation of critical documents and processes, especially within the healthcare sector. In healthcare missions, particularly in the regions that are underdeveloped, hand-written records persist as the primary mode of documentation. The credibility of these handwritten documents hinges on the authenticity of the accompanying signatures, making signature verification a paramount safeguard for the integrity and security of medical information. Nonetheless, traditional offline methods of signature identification can be time-consuming and inefficient, particularly while dealing with a massive volume of documents. This arises the evident need for automated signature verification systems. Our research introduces an innovative signature verification system which synthesizes the strengths of fuzzy logic and CNN (Convolutional Neural Networks) to deliver precise and efficient signature verification. Leveraging the capabilities of Fuzzy Logic for feature representation and CNNs for discriminative learning, our proposed hybrid model offers a compelling solution. Through rigorous training, spanning a mere 28 epochs, our hybrid model exhibits remarkable performance by attaining a training accuracy of 91.29% and a test accuracy of 88.47%, underscoring its robust generalization capacity. In an era of evolving security requirements and the persistent relevance of handwritten signatures, our research links the disparity between tradition and modernity.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.