{"title":"Fluorinated Organic Compounds As Promising Materials to Protect Lithium Metal Anode: A Review","authors":"Tuoya Naren, Ruheng Jiang, Qianfeng Gu, Gui-chao Kuang, Libao Chen, Qichun Zhang","doi":"10.1016/j.mtener.2024.101512","DOIUrl":null,"url":null,"abstract":"<p>The lowest electrode potential and remarkable theoretical specific capacity of lithium (Li) metal make it a promising choice for next-generation high energy density batteries. However, the practical application of Lithium metal anodes (LMAs) faces several significant challenges due to their unwanted reactions with the electrolyte to continuously form Li dendrites. These issues significantly hinder both electrochemical performance and safety. To overcome these challenges, fluorinated organic materials (FOMs), with their unique chemical and physical properties, offer an exciting avenue for enhancing cycle stability and energy density of batteries. This is attributed to their higher electrolytic window and chemical stability. This review would provide a comprehensive overview of the crucial role played by FOMs in safeguarding LMAs, such as F-containing electrolyte engineering, separator modification, and artificial SEI. Additionally, it intends to explore the challenges and latest advances in this domain, with the ultimate objective of offering insights and forward-looking perspectives for future research initiatives in related areas.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"14 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101512","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The lowest electrode potential and remarkable theoretical specific capacity of lithium (Li) metal make it a promising choice for next-generation high energy density batteries. However, the practical application of Lithium metal anodes (LMAs) faces several significant challenges due to their unwanted reactions with the electrolyte to continuously form Li dendrites. These issues significantly hinder both electrochemical performance and safety. To overcome these challenges, fluorinated organic materials (FOMs), with their unique chemical and physical properties, offer an exciting avenue for enhancing cycle stability and energy density of batteries. This is attributed to their higher electrolytic window and chemical stability. This review would provide a comprehensive overview of the crucial role played by FOMs in safeguarding LMAs, such as F-containing electrolyte engineering, separator modification, and artificial SEI. Additionally, it intends to explore the challenges and latest advances in this domain, with the ultimate objective of offering insights and forward-looking perspectives for future research initiatives in related areas.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials