{"title":"Sufficient Conditions for Linear Stability of Complex-Balanced Equilibria in Generalized Mass-Action Systems","authors":"Stefan Müller, Georg Regensburger","doi":"10.1137/22m154260x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 325-357, March 2024. <br/> Abstract. Generalized mass-action systems are power-law dynamical systems arising from chemical reaction networks. Essentially, every nonnegative ODE model used in chemistry and biology (for example, in ecology and epidemiology) and even in economics and engineering can be written in this form. Previous results have focused on existence and uniqueness of special steady states (complex-balanced equilibria) for all rate constants, thereby ruling out multiple (special) steady states. Recently, necessary conditions for linear stability have been obtained. In this work, we provide sufficient conditions for the linear stability of complex-balanced equilibria for all rate constants (and also for the nonexistence of other steady states). In particular, via sign vector conditions (on the stoichiometric coefficients and kinetic orders), we guarantee that the Jacobian matrix is a [math]-matrix. Technically, we use a new decomposition of the graph Laplacian which allows us to consider orders of (generalized) monomials. Alternatively, we use cycle decomposition which allows a linear parametrization of all Jacobian matrices. In any case, we guarantee stability without explicit computation of steady states. We illustrate our results in examples from chemistry and biology: generalized Lotka–Volterra systems and SIR models, a two-component signaling system, and an enzymatic futile cycle.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m154260x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 325-357, March 2024. Abstract. Generalized mass-action systems are power-law dynamical systems arising from chemical reaction networks. Essentially, every nonnegative ODE model used in chemistry and biology (for example, in ecology and epidemiology) and even in economics and engineering can be written in this form. Previous results have focused on existence and uniqueness of special steady states (complex-balanced equilibria) for all rate constants, thereby ruling out multiple (special) steady states. Recently, necessary conditions for linear stability have been obtained. In this work, we provide sufficient conditions for the linear stability of complex-balanced equilibria for all rate constants (and also for the nonexistence of other steady states). In particular, via sign vector conditions (on the stoichiometric coefficients and kinetic orders), we guarantee that the Jacobian matrix is a [math]-matrix. Technically, we use a new decomposition of the graph Laplacian which allows us to consider orders of (generalized) monomials. Alternatively, we use cycle decomposition which allows a linear parametrization of all Jacobian matrices. In any case, we guarantee stability without explicit computation of steady states. We illustrate our results in examples from chemistry and biology: generalized Lotka–Volterra systems and SIR models, a two-component signaling system, and an enzymatic futile cycle.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.