{"title":"MultiCBR: Multi-view Contrastive Learning for Bundle Recommendation","authors":"Yunshan Ma, Yingzhi He, Xiang Wang, Yinwei Wei, Xiaoyu Du, Yuyangzi Fu, Tat-Seng Chua","doi":"10.1145/3640810","DOIUrl":null,"url":null,"abstract":"<p>Bundle recommendation seeks to recommend a bundle of related items to users to improve both user experience and the profits of platform. Existing bundle recommendation models have progressed from capturing only user-bundle interactions to the modeling of multiple relations among users, bundles and items. CrossCBR, in particular, incorporates cross-view contrastive learning into a two-view preference learning framework, significantly improving SOTA performance. It does, however, have two limitations: 1) the two-view formulation does not fully exploit all the heterogeneous relations among users, bundles and items; and 2) the ”early contrast and late fusion” framework is less effective in capturing user preference and difficult to generalize to multiple views. </p><p>In this paper, we present MultiCBR, a novel <b>Multi</b>-view <b>C</b>ontrastive learning framework for <b>B</b>undle <b>R</b>ecommendation. First, we devise a multi-view representation learning framework capable of capturing all the user-bundle, user-item and bundle-item relations, especially better utilizing the bundle-item affiliations to enhance sparse bundles’ representations. Second, we innovatively adopt an ”early fusion and late contrast” design that first fuses the multi-view representations before performing self-supervised contrastive learning. In comparison to existing approaches, our framework reverses the order of fusion and contrast, introducing the following advantages: 1) our framework is capable of modeling both cross-view and ego-view preferences, allowing us to achieve enhanced user preference modeling; and 2) instead of requiring quadratic number of cross-view contrastive losses, we only require two self-supervised contrastive losses, resulting in minimal extra costs. Experimental results on three public datasets indicate that our method outperforms SOTA methods. The code and dataset can be found in the github repo https://github.com/HappyPointer/MultiCBR.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":"228 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3640810","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Bundle recommendation seeks to recommend a bundle of related items to users to improve both user experience and the profits of platform. Existing bundle recommendation models have progressed from capturing only user-bundle interactions to the modeling of multiple relations among users, bundles and items. CrossCBR, in particular, incorporates cross-view contrastive learning into a two-view preference learning framework, significantly improving SOTA performance. It does, however, have two limitations: 1) the two-view formulation does not fully exploit all the heterogeneous relations among users, bundles and items; and 2) the ”early contrast and late fusion” framework is less effective in capturing user preference and difficult to generalize to multiple views.
In this paper, we present MultiCBR, a novel Multi-view Contrastive learning framework for Bundle Recommendation. First, we devise a multi-view representation learning framework capable of capturing all the user-bundle, user-item and bundle-item relations, especially better utilizing the bundle-item affiliations to enhance sparse bundles’ representations. Second, we innovatively adopt an ”early fusion and late contrast” design that first fuses the multi-view representations before performing self-supervised contrastive learning. In comparison to existing approaches, our framework reverses the order of fusion and contrast, introducing the following advantages: 1) our framework is capable of modeling both cross-view and ego-view preferences, allowing us to achieve enhanced user preference modeling; and 2) instead of requiring quadratic number of cross-view contrastive losses, we only require two self-supervised contrastive losses, resulting in minimal extra costs. Experimental results on three public datasets indicate that our method outperforms SOTA methods. The code and dataset can be found in the github repo https://github.com/HappyPointer/MultiCBR.
期刊介绍:
The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain:
new principled information retrieval models or algorithms with sound empirical validation;
observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking;
accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques;
formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks;
development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking;
development of computational models of user information preferences and interaction behaviors;
creation and analysis of evaluation methodologies for information retrieval and information seeking; or
surveys of existing work that propose a significant synthesis.
The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.