p-Summing Bloch mappings on the complex unit disc

IF 1.1 2区 数学 Q1 MATHEMATICS
M. G. Cabrera-Padilla, A. Jiménez-Vargas, D. Ruiz-Casternado
{"title":"p-Summing Bloch mappings on the complex unit disc","authors":"M. G. Cabrera-Padilla, A. Jiménez-Vargas, D. Ruiz-Casternado","doi":"10.1007/s43037-023-00318-6","DOIUrl":null,"url":null,"abstract":"<p>The notion of <i>p</i>-summing Bloch mapping from the complex unit open disc <span>\\(\\mathbb {D}\\)</span> into a complex Banach space <i>X</i> is introduced for any <span>\\(1\\le p\\le \\infty .\\)</span> It is shown that the linear space of such mappings, equipped with a natural seminorm <span>\\(\\pi ^{\\mathcal {B}}_p,\\)</span> is Möbius-invariant. Moreover, its subspace consisting of all those mappings which preserve the zero is an injective Banach ideal of normalized Bloch mappings. Bloch versions of the Pietsch’s domination/factorization Theorem and the Maurey’s extrapolation Theorem are presented. We also introduce the spaces of <i>X</i>-valued Bloch molecules on <span>\\(\\mathbb {D}\\)</span> and identify the spaces of normalized <i>p</i>-summing Bloch mappings from <span>\\(\\mathbb {D}\\)</span> into <span>\\(X^*\\)</span> under the norm <span>\\(\\pi ^{\\mathcal {B}}_p\\)</span> with the duals of such spaces of molecules under the Bloch version of the <span>\\(p^*\\)</span>-Chevet–Saphar tensor norms <span>\\(d_{p^*}.\\)</span></p>","PeriodicalId":55400,"journal":{"name":"Banach Journal of Mathematical Analysis","volume":"19 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Banach Journal of Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-023-00318-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The notion of p-summing Bloch mapping from the complex unit open disc \(\mathbb {D}\) into a complex Banach space X is introduced for any \(1\le p\le \infty .\) It is shown that the linear space of such mappings, equipped with a natural seminorm \(\pi ^{\mathcal {B}}_p,\) is Möbius-invariant. Moreover, its subspace consisting of all those mappings which preserve the zero is an injective Banach ideal of normalized Bloch mappings. Bloch versions of the Pietsch’s domination/factorization Theorem and the Maurey’s extrapolation Theorem are presented. We also introduce the spaces of X-valued Bloch molecules on \(\mathbb {D}\) and identify the spaces of normalized p-summing Bloch mappings from \(\mathbb {D}\) into \(X^*\) under the norm \(\pi ^{\mathcal {B}}_p\) with the duals of such spaces of molecules under the Bloch version of the \(p^*\)-Chevet–Saphar tensor norms \(d_{p^*}.\)

复杂单位圆盘上的p求和布洛赫映射
对于任意的(1\le p\le \infty .\),引入了从复数单元开盘(\mathbb {D}\)到复数巴纳赫空间X的p和布洛赫映射的概念,证明了这种映射的线性空间,配备了自然的半规范(\pi ^{\mathcal {B}}_p,\),是莫比乌斯不变的。此外,它的子空间由所有保持零点的映射组成,是归一化布洛赫映射的注入式巴拿赫理想。我们还提出了布洛赫版本的皮特希支配/因子化定理和莫雷外推法定理。我们还介绍了 \(\mathbb {D}\) 上的 X 值布洛赫分子空间,并确定了归一化 p-p^*\)-Chevet-Saphar 张量规范 \(d_{p^*}.\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
67
审稿时长
>12 weeks
期刊介绍: The Banach Journal of Mathematical Analysis (Banach J. Math. Anal.) is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Banach J. Math. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and operator theory and all modern related topics. Banach J. Math. Anal. normally publishes survey articles and original research papers numbering 15 pages or more in the journal’s style. Shorter papers may be submitted to the Annals of Functional Analysis or Advances in Operator Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信