Indefinite Sturm–Liouville Operators in Polar Form

Pub Date : 2024-01-25 DOI:10.1007/s00020-023-02746-3
Branko Ćurgus, Volodymyr Derkach, Carsten Trunk
{"title":"Indefinite Sturm–Liouville Operators in Polar Form","authors":"Branko Ćurgus, Volodymyr Derkach, Carsten Trunk","doi":"10.1007/s00020-023-02746-3","DOIUrl":null,"url":null,"abstract":"<p>We consider the indefinite Sturm–Liouville differential expression </p><span>$$\\begin{aligned} {\\mathfrak {a}}(f):= - \\frac{1}{w}\\left( \\frac{1}{r} f' \\right) ', \\end{aligned}$$</span><p>where <span>\\({\\mathfrak {a}}\\)</span> is defined on a finite or infinite open interval <i>I</i> with <span>\\(0\\in I\\)</span> and the coefficients <i>r</i> and <i>w</i> are locally summable and such that <i>r</i>(<i>x</i>) and <span>\\(({\\text {sgn}}\\,x) w(x)\\)</span> are positive a.e. on <i>I</i>. With the differential expression <span>\\({\\mathfrak {a}}\\)</span> we associate a nonnegative self-adjoint operator <i>A</i> in the Krein space <span>\\(L^2_w(I)\\)</span> which is viewed as a coupling of symmetric operators in Hilbert spaces related to the intersections of <i>I</i> with the positive and the negative semi-axis. For the operator <i>A</i> we derive conditions in terms of the coefficients <i>w</i> and <i>r</i> for the existence of a Riesz basis consisting of generalized eigenfunctions of <i>A</i> and for the similarity of <i>A</i> to a self-adjoint operator in a Hilbert space <span>\\(L^2_{|w|}(I)\\)</span>. These results are obtained as consequences of abstract results about the regularity of critical points of nonnegative self-adjoint operators in Krein spaces which are couplings of two symmetric operators acting in Hilbert spaces.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-023-02746-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the indefinite Sturm–Liouville differential expression

$$\begin{aligned} {\mathfrak {a}}(f):= - \frac{1}{w}\left( \frac{1}{r} f' \right) ', \end{aligned}$$

where \({\mathfrak {a}}\) is defined on a finite or infinite open interval I with \(0\in I\) and the coefficients r and w are locally summable and such that r(x) and \(({\text {sgn}}\,x) w(x)\) are positive a.e. on I. With the differential expression \({\mathfrak {a}}\) we associate a nonnegative self-adjoint operator A in the Krein space \(L^2_w(I)\) which is viewed as a coupling of symmetric operators in Hilbert spaces related to the intersections of I with the positive and the negative semi-axis. For the operator A we derive conditions in terms of the coefficients w and r for the existence of a Riesz basis consisting of generalized eigenfunctions of A and for the similarity of A to a self-adjoint operator in a Hilbert space \(L^2_{|w|}(I)\). These results are obtained as consequences of abstract results about the regularity of critical points of nonnegative self-adjoint operators in Krein spaces which are couplings of two symmetric operators acting in Hilbert spaces.

分享
查看原文
极点形式的无穷 Sturm-Liouville 算子
我们考虑不确定的 Sturm-Liouville 微分表达式 $$begin{aligned} {\mathfrak {a}}(f):= - \frac{1}{w}\left( \frac{1}{r} f' \right) ', \end{aligned}$$其中\({\mathfrak {a}}\)定义在有限或无限开区间I上,且\(0\in I\) 和系数r和w是局部可求和的,并且使得r(x)和\(({\text {sgn}}\,x) w(x)\)是正的。通过微分表达式 \({\mathfrak {a}}\),我们在克雷因空间 \(L^2_w(I)\) 中关联了一个非负自相关算子 A,它被视为希尔伯特空间中对称算子的耦合,与 I 与正半轴和负半轴的交点相关。对于算子 A,我们从系数 w 和 r 的角度推导出存在由 A 的广义特征函数组成的里兹基的条件,以及 A 与希尔伯特空间 \(L^2_{|w|}(I)\)中的自交算子相似的条件。这些结果是关于克雷因空间中非负自相关算子临界点正则性的抽象结果的后果,而克雷因空间是作用于希尔伯特空间的两个对称算子的耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信